This site is out of date.

To see our most recent course site, click here!

Schedule

Date Topic Subtopic Section Readings HW Release HW Deadline
Week 0 0. Math and Code Review
Jan. 25 (Tu) Welcome to CS181 Ch 1 HW 1 released (regression)
Jan. 27 (Th) Regression Linear Regression 2.3-2.5, 2.6.1, 2.7.1
Jan. 28 (Fr)
Week 1 1. Linear regression
Feb. 1 (Tu) Regression Probabilistic Linear Regression 2.6.2, 2.6.3
Feb. 3 (Th) Classification Linear Classification 3.1-3.5
Feb. 4 (Fr)
Week 2 2. Linear and probabilistic classification
Feb. 8 (Tu) Classification Probabilistic Linear Classification 3.6
Feb. 10 (Th) Model selection Model Selection, Frequentist 2.7, 2.8
Feb. 11 (Fr) HW 2 released (classification and model selection) HW 1 due
Week 3 3. Model selection
Feb. 15 (Tu) Model selection Model Selection, Bayesian 2.8, 2.9
Feb. 17 (Th) Neural networks Neural Networks 1 4.1-4.4, 4.6
Feb. 18 (Fr)
Week 3 4. Neural networks
Feb. 22 (Tu) Neural networks Neural Networks 2 4.4
Feb. 24 (Th) SVMs Support Vector Machines 1 5.1-5.3
Feb. 25 (Fr) HW 3 released (neural networks, model selection) HW 2 due
Week 4 Midterm 1 review
Mar. 1 (Tu) Midterm 1
Mar. 3 (Th) Ethics
Mar. 4 (Fr)
Week 5 5. SVMs
Mar. 8 (Tu) SVMs 2 Support Vector Machines 2 5.4
Mar. 10 (Th) Unsupervised learning Clustering 6
Mar. 11 (Fr) HW 4 released (ethics, clustering, SVM) HW 3 due
Week 6 7. K-means, HAC
Mar. 15 (Tu) Spring break
Mar. 17 (Th) Spring break 9.1-9.5
Mar. 18 (Fr)
Week 7 8. Mixture, EM
Mar. 22 (Tu) Mixture Models
Mar. 24 (Th) PCA
Mar. 25 (Fr) HW 5 released (Mixtures, EM, graphical models) HW 4 due
Week 8 9. PCA, topic models
Mar. 29 (Tu) GMs and BNs Topic Models 8
Mar. 31 (Th) Graphical Models
Apr. 1 (Fr) Practical released
Week 9 10. Bayes nets, inference
Apr. 5 (Tu) Inference for Bayes Nets
Apr. 7 (Th) Hidden Markov Models
Apr. 8 (Fr) HW 5 due
Week 10 11. HMMs, Kalman filters
Apr. 12 (Tu) RL Markov Decision Processes SB 3.1-3.6, SB 4.1-4.4 *
Apr. 14 (Th)
Apr. 15 (Fr) HW6 released (inference in graphical models, MDPs) Practical due
Week 11 12. Reinforced learning, MDPs
Apr. 19 (Tu) Reinforcement Learning 2 SB 1.1-1.4, SB 6.1-6.5 *
Apr. 21 (Th) Interpretability
Apr. 22 (Fr)
Week 12 Midterm 2 review
Apr. 26 (Tu) Midterm 2
Apr. 28 (Th)
Apr. 29 (Fr) HW 6 due
*SB refers to Sutton and Barto 2018, Reinforcement Learning: An Introduction.