This site is out of date.

To see our most recent course site, click here!

Schedule

Date Topic Subtopic Section Readings HW Release HW Deadline
0. Math and Code Review
Jan. 26 (T) Introduction 2.1, 2.2.1 HW 1 (Regression) released
Jan. 28 (Th) Regression Linear Regression 2.3-2.5, 2.6.1, 2.7.1
Jan. 29 (Fr)
1. Linear Regression, MLE
Feb. 2 (T) Probabilistic Linear Regression 2.6.2, 2.6.3
Feb. 4 (Th) Classification Linear Classification 3.1-3.5 HW 1 due
Feb. 5 (Fr) HW 2 (Classification, Bayes) released
2. Probabilistic Classification
Feb. 9 (T) Probabilistic Linear Classification 3.6
Feb. 11 (Th) Model Selection Model Selection - Frequentist 2.7, 2.8
Feb. 12 (Fr)
3.
Feb. 16 (T) Model Selection - Bayesian 2.8, 2.9
Feb. 18 (Th) Neural Networks Neural Networks 1 4.1-4.4, 4.6
Feb. 19 (Fr) HW 3 (Bayes, Neural Networks) released HW 2 due
4.
Feb. 23 (T) Neural Networks 2 4.4
Feb. 25 (Th) SVMs Support Vector Machines 1 5.1-5.3
Feb. 26 (Fr)
5.
Mar. 2 (T) Support Vector Machines 2 5.4
Mar. 4 (Th) EthiCS Guest Lecture
Mar. 5 (Fr) HW 4 (SVMs, Ethics, Clustering) released HW 3 due
6.
Mar. 9 (T) Unsupervised Learning Clustering 6
Mar. 11 (Th) Midterm 1
Mar. 12 (Fr)
7.
Mar. 16 (T) Wellness day, no class
Mar. 18 (Th) Mixture Models 9.1-9.5
Mar. 19 (Fr) HW 5 (Mixtures, EM, Graphical) released HW 4 due
8.
Mar. 23 (T) Principal Component Analysis 7
Mar. 25 (Th) Topic Models 9.6
Mar. 26 (Fr) Practical released
9.
Mar. 30 (T) GMs and BNs Graphical Models 8
Apr. 1 (Th) Inference for Bayes Nets
Apr. 2 (Fr) HW 5 due
10.
Apr. 6 (T) Hidden Markov Models 10
Apr. 8 (Th) Markov Decision Processes SB 3.1-3.6, SB 4.1-4.4 *
Apr. 9 (Fr) HW 6 (Inference, MDPs) released Practical due
11.
Apr. 13 (T) RL Reinforcement Learning 1
Apr. 15 (Th) Wellness day, no class
Apr. 16 (Fr)
12.
Apr. 20 (T) Reinforcement Learning 2 SB 1.1-1.4, SB 6.1-6.5 *
Apr. 22 (Th) Interpretability
Apr. 23 (Fr) HW 6 due
13.
Apr. 27 (T) Midterm 2
*SB refers to Sutton and Barto 2018, Reinforcement Learning: An Introduction.