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HMMs, Kalman Filters, and MDP’s

Solution

1 Hidden Markov Models

A Hidden Markov Model (HMM) is useful for inferring a sequence of unknown or hidden states
from a corresponding sequence of observed evidence.

1.1 Graphical Model

Consider a set of possible states si ∈ {Sk}Kk=1, which are one-hot encoded, and a set of possible
observations xi ∈ {Oj}Mj=1. That is, there are K possible options for states and M possible options
for the observations. A data point would be a sequence of observations x1,x2, . . .xn. As shown in
the figure above, we believe that each individual xi is generated from some hidden state si, which
also gives rise to the next hidden state si+1. We also denote by N to be the number of data points
we have.

1.2 Model Assumptions

HMMs are characterized by and allow us to reason about the following joint distribution

p(s1, . . . , sn,x1, . . . ,xn) = p(s1, . . . , sn)p(x1, . . . ,xn | s1, . . . , sn)

However, it’s not immediately obvious how we should optimize this model, and the following as-
sumptions make this easier:

• The next hidden state depends only on the current state. This is also known as the Markov
property. In other words, we assume that

p(st+1 | s1, . . . st,x1, . . . ,xt) = p(st+1 | st),

for t = 1, 2, . . . n− 1.

• The current observation depends only on the current hidden state. That is, we have

p(xt | s1, . . . , st,x1, . . . ,xt−1) = p(xt | st),



for t = 1, 2, . . . n.

The graphical model above is a useful way to more easily remember these assumptions.

The above assumptions are quite powerful and allow us to simplify the joint probability we desire
to model as follows:

p(s1, . . . , sn,x1, . . . ,xn) = p(s1, . . . , sn)p(x1, . . . ,xn | s1, . . . , sn)

= p(s1)
n−1∏
t=1

p(st+1 | st)
n∏

t=1

p(xt | st)

1.3 Exercise: When to Use HMMs (Source: CMU)

For each of the following scenarios, is it appropriate to use a Hidden Markov Model? Why or why
not? What would the observed data be in each case, and what would the hidden states capture?

1. Stock market price data
2. Recommendations on a database of movie reviews
3. Daily precipitation data in Boston
4. Optical character recognition for identifying words



1. Stock market price data: Yes, an HMM is appropriate since stock market data is time-
dependent. Observed data: stock prices listed on exchanges. Hidden states: true value of
the stock, perhaps a combination of company policies, growth potential, economic conditions,
etc.

2. Recommendations on a database of movie reviews: No, an HMM would not be appropriate
since we don’t expect user preferences to change much over time.

3. Daily precipitation data in Boston: Yes, precipitation today is very likely to affect the chance
of precipitation tomorrow. Observed data: amount of precipitation each day. Possible hidden
states: true weather conditions, such as humidity or chance of rain.

4. Optical character recognition, where we are identifying words: Yes, word recognition is very
dependent upon the sequence of characters. Observed data: image pixels of written char-
acters. Hidden states: the true character represented (think MNIST from the last theory
pset).

1.4 Parameterization

• θ ∈ RK : defines the prior distribution over initial hidden states

• T ∈ RK×K : transition matrix where Tij is the probability of transitioning from Si to Sj

• π ∈ RK×M : conditional probabilities of observations given hidden states such that p(xt =
Oj |st = Sk; {π}) = πkj . In other words, πkj is the probability that xt is in class j if st is in
class k.

First, we need to estimate the parameters from the data, which we can do with a variant of EM.
Then, with our trained HMM, we are able to perform several inference tasks on our data. As an
aside, we sometimes denote by πk the column vector corresponding to the kth row of π. Intuitively,
this corresponds to the “transitions” to the possible x’s coming from state class Sk.

1.5 Forward-Backward Algorithm

The HMM model is characterized by the joint distribution p(s1, . . . , sn,x1, . . . ,xn), which means
that many of our training and inference tasks require marginalization to obtain conditionals. Thus,
naive algorithms can be expensive (they require lots of nested summations over states), and we use
EM instead. We define the recurrence relations αt(st) and βt(st) in the E-Step:

• αt(st) represents the joint probability of observations x1, . . . ,xt and state st: αt(st) =
p(x1, . . .xt, st). Intuitively, this allows us to quickly answer the question: “how likely are
we to currently be in state st, if we observed a specific list of values?” It turns out that
αt can be defined in terms of αt−1. That is, we move forwards through the sequence to
calculate the α’s.

• βt(st) represents the joint probability of observations xt+1, . . . ,xn conditioned on state st:
βt(st) = p(xt+1, . . .xn|st). Similarly, we can think about this intuitively by asking “what are
the chances of the next observations if we are currently in state st?” It turns out that βt can
be defined in terms of βt+1. That is, we move backwards through the sequence to calculate
the β’s.



(a) alpha (b) beta

Note that the probabilities we use for calculating α and β are given by the parameters that we fix
in the E-Step.

∀st : αt(st) =

{
p(xt | st)

∑
st−1

p(st | st−1)αt−1(st−1) if 1 < t ≤ n

p(x1 | s1)p(s1) o.w.

∀st : βt(st) =

{ ∑
st+1

p(st+1 | st)p(xt+1 | st+1)βt+1(st+1) if 1 ≤ t < n

1 o.w.

1.6 EM for HMMs

Given data points {xi}Ni=1 defined by sequences (xi1, . . . , x
i
n) of length n represented as row vec-

tors, we want to infer the parameters {T,θ,π}. Had we been given the true states, we could
easily compute joint probability p(xi, si) and write the complete-data log likelihood, and maximize
with respect to the parameters. Instead, we need to estimate state distributions and parameters
iteratively.

1.6.1 Inference Patterns with α,β

The following patterns are useful for inference with a trained HMM as well as during the E-
Step:

• αt(st)βt(st) = p(x1, . . . ,xn, st) ∝ p(st|x1, . . . ,xn)

• joint of observations: p(x1, . . . ,xn) =
∑

st
αt(st)βt(st) (for any t)

• smoothing: p(st |x1, . . . ,xn) ∝ p(x1, . . . ,xn, st) = αt(st)βt(st)

• prediction: p(xn+1 |x1, . . . ,xn) ∝
∑

sn,sn+1
αn(sn)p(sn+1 | sn)p(xn+1 | sn+1)

• transition: p(st, st+1 |x1, . . . ,xn) ∝ αt(st)p(st+1 | st)p(xt+1 | st+1)βt+1(st+1)

The derivations of the above equations can be found in the textbook. As we can see above, the
α’s and β’s allow us to concisely capture the quantities we would like to model, which allows us to
quickly compute important quantities.



1.6.2 E-Step

The goal of the expectation step is to compute the expected values of the hidden states given a fixed
set of parameters w = {T,θ,π}. That is, we estimate the state distribution for p(si1, . . . , s

i
n|xi),

which we will call qi. Note that this is a matrix with n rows and K columns, where the rows
correspond to each sj , and the columns correspond to the possible classes of the sj .

The idea is to find successive approximations of this quantity based on the data we have available.
We let sit,k be the indicator that st = Sk. Then we define the t, k element of q to be

qit,k = E[sit,k|xi] = P (sit = Sk|xi).

That is, this is the probability that the state at time t is in class k given all the observed emissions.
Notice how this is exactly the smoothing quantity we had in the previous subsection, which is the
motivation for defining αt and βt.

We would also need to consider the expectation of the joint of two consecutive states. Mathemat-
ically, this is written as Qi

t,t+1 = E[sit, s
i
t+1|xi]. Note that to encapsulate all possible values of the

states, this would mean that Qi
t,t+1 is a matrix. We then define the k, l element to be

Qi
t,t+1,k,l = E[sit = Sk, s

i
t+1 = Sl|xi] = P (sit = Sk, s

i
t+1 = Sl|xi).

Notice how this is exactly the transition equation in the previous subsection!

1.6.3 M-Step

Now we need to update our parameters to maximize the expected complete-data log likelihood
ES[ln p(x, s;w)]. It becomes a very nasty expression, so we will not include it here. It can be found
in the textbook for reference. Applying the appropriate Lagrange multipliers and maximizing with
respect to each of the parameters of interest, we recover the following update equations:

θk =

∑N
i=1 q

i
1,k

N
,

which makes intuitive sense as the sample averages of our estimated probabilities for each possible
value of the initial state. Next,

Tk,l =

∑N
i=1

∑n−1
t=1 Qi

t,t+1,k,l∑N
i=1

∑n−1
t=1 qitk

,

which has the intuitive interpretation of the (normalized) average of the transition probabilities,
and finally

πk,m =

∑N
i=1

∑n
t=1 q

i
t,kx

i
t,m∑N

i=1

∑n
t=1 q

i
tk

,



which has the intuitive interpretation of a weighted average of the emissions given the state. After
updating these parameters, we repeat the EM algorithm until convergence of said parameters.

1.7 Exercise: Parameter Estimation in Supervised HMMs

You are trying to predict the weather using an HMM. The hidden states are the weather of the
day, which may be sunny or rainy, and the observable states are the color of the clouds, which can
be white or gray. You have data on the weather and clouds from one sequence of four days (note:
the hidden states are observed here):

Day Weather Clouds

1 Sunny White
2 Rainy Gray
3 Rainy Gray
4 Sunny Gray

1. Draw a graphical model representing the HMM.
2. Give the values of N,n, c and of the one-hot vectors s11, . . . , s

1
4,x

1
1, . . . ,x

1
4.

3. Estimate and interpret the values of the parameters θ,T, {π} using the MLE estimators for
the supervised HMM provided in the previous subsection.

Solution

1.

(all nodes are observed)

2. N = 1, the number of sequences observed
n = 4, the length of the sequences
c = 2, the number of states a hidden state can take
s11 = [1 0]⊤, s12 = [0 1]⊤, s13 = [0 1]⊤, s14 = [1 0]⊤

x1
1 = [1 0]⊤,x1

2 = [0 1]⊤,x1
3 = [0 1]⊤,x1

4 = [0 1]⊤

3. θ̂ = [1 0]⊤, the distribution of the weather for the initial state

T̂ =

[
0 1
1
2

1
2

]
, the transition probabilities for the weather

π̂1 = [12
1
2 ]

⊤, the distribution of cloud colors on sunny days
π̂2 = [0 1]⊤, the distribution of cloud colors on rainy days

End Solution



1.8 Exercise: EM for HMMs

You are trying to model a toy’s state using an HMM. At each time step, the toy can be active (state
1) or inactive (state 2), but you can only observe the color of the indicator light, which can be red
(observation state 1) or green (observation state 2). You have collected data from one sequence:

Time Light

1 Green
2 Red
3 Green

You initialize your EM with θ = [12
1
2 ]

⊤,T =

[
2
3

1
3

1
3

2
3

]
,π1 = [14

3
4 ]

⊤,π2 = [34
1
4 ]

⊤.

1. Compute α1, α2, α3, β1, β2, β3 for the forward-backward algorithm using the initial parameter
values.

2. Refer to the definition of q1
t in Section 1.6.2. Now, compute the values of q1

1,q
1
2 using the α

and β values.
3. Refer to the definition of Q1

t,t+1 in Section 1.6.2. Compute the value of Q1
1,2 using the α and

β values.

During EM, at one point you obtain the following values after the E step:

q1
1 =

[
2

3

1

3

]⊤
, q1

2 =

[
1

3

2

3

]⊤
, q1

3 =

[
2

3

1

3

]⊤

Q1
1,2 =

[
1
6

1
2

1
6

1
6

]
, Q1

2,3 =

[
1
6

1
6

1
2

1
6

]
1. Use the above values to compute N̂k, N̂kl, N̂kj .
2. Complete the M step by updating the parameters θ,T,π1,π2.



Solution

1. Using the recursive defintions for α, β and the current values of θ,T,π1,π2:

α1(s
1
1) =

{
3
8 s11 = active
1
8 s11 = inactive

α2(s
1
2) =

{
7
96 s12 = active
15
96 s12 = inactive

α3(s
1
3) =

{
29
384 s13 = active
37

1152 s13 = inactive

β3(s
1
3) =

{
1 s13 = active

1 s13 = inactive

β2(s
1
2) =

{
7
12 s12 = active
5
12 s12 = inactive

β1(s
1
1) =

{
29
144 s11 = active
37
144 s11 = inactive

2. q1tk is the probability that s1t is Sk (given the observations), and q1tk = p(s1t = Sk | x1;w) ∝
αt(Sk)βt(Sk). Then q1

1 ∝ [ 87
1152

37
1152 ]

⊤, so q1
1 = [ 87124

37
124 ]

⊤. Also, q1
2 ∝ [ 49

1152
75

1152 ]
⊤, so

q1
2 = [ 49124

75
124 ]

⊤.

3. q1t,t+1,k,l is the probability that s1t is Sk and s1t+1 is Sl (given the observations), and q1t,t+1,k,l =

p(s1t = Sk, s
1
t+1 = Sl | x1;w) ∝ αt(st)p(st+1 | st)p(xt+1 | st+1)βt+1(st+1). Then

Q1
1,2 ∝

[
42

1152
45

1152
7

1152
30

1152

]
so

Q1
1,2 =

[
42
124

45
124

7
124

30
124

]
4.

For N̂k: N̂1 =
5

3
, N̂2 =

4

3

For N̂kl: N̂1,1 =
1

3
, N̂1,2 =

2

3
, N̂2,1 =

2

3
, N̂2,2 =

1

3

For N̂kj : N̂1,1 =
1

3
, N̂1,2 =

4

3
, N̂2,1 =

2

3
, N̂2,2 =

2

3

5. θ = [23
1
3 ]

⊤

T =

[
1
3

2
3

2
3

1
3

]
π1 = [15

4
5 ]

⊤

π2 = [12
1
2 ]

⊤

End Solution



2 Markov Decision Processes

A Markov Decision Process (MDP) is a framework for modeling an agent’s actions in the world. It
consists of:

1. A set of states S

2. A set of actions A

3. A reward function r : S ×A→ R

4. A transition model p(s′|s, a), ∀s, s′ ∈ S, a ∈ A.

A policy π is a mapping from states to actions, i.e. π : S → A.

2.1 Finite time horizon MDP

In the finite horizon setting, a policy may vary with the number of time periods remaining. π(t)
denotes the policy with t time steps to go. T is the decision horizon. The value of a policy with t
time steps to go is defined inductively to be:

V π
(t)(s) =

{
r(s, π(1)(s)) if t = 1

r(s, π(t)(s)) +
∑

s′∈S p(s′|s, π(t)(s))V π
(t−1)(s

′) o.w.
(1)

The process of computing these values inductively, working from the end of the horizon to the
present, is called value iteration. If we instead look forward in time, we are computing the expected
value of the policy

V π
T (s) = Es1,...,sT

[
T∑
t=0

r(st, π(T−t)(st))

]
(2)

by induction, where s1 := s. V π(s) is the MDP value function.

In an MDP, the general goal is to find an optimal policy by maximizing the expected reward under
the policy, i.e. maximizing the value function. This is the planning problem.



2.2 Infinite Horizon MDP

Policy Evaluation We can also send T → ∞, i.e. have an infinite time horizon. In that case,
we need a discount factor 0 < γ < 1, and we want to compute the value function

V π(s) = Es1,s2,...

[ ∞∑
t=0

γtr(st, π(st))

]
(3)

where s1 := s, and the γ factor ensures convergence (assuming bounded rewards). In this setting,
we only worry about stationary policies that don’t vary with time. This is the policy evaluation
problem; for any given policy π, we can find V π(s) by solving the system of linear equations

V π(s) = r(s, π(s)) + γ
∑
s′∈S

p(s′|s, π(s))V π(s′) (4)

These capture consistency about the value function. To solve this system, we can use Gaussian
elimination, or simply iterate until convergence as in the finite horizon case.

Given a policy π and θ (small positive number), we find V π iteratively as follows:

• Initialize: V (s) = 0 for all states s.

• Repeat

– Update step:

V ′(s) = r(s, π(s)) + γ
∑
s′∈S

p(s′|s, π(s))V (s′), ∀s (5)

– ∆ = max(|V ′ − V |)

– V ← V ′

until ∆ < θ

Value Iteration Suppose we have an optimal policy π∗. This satisfies the following set of equa-
tions known as the Bellman equations:

V ∗(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V ∗(s′)

]
(6)

where V ∗ ≜ V π∗
. Assuming we know V ∗, we can read off the optimal policy by setting

π∗(s) = argmax
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V ∗(s′)

]
(7)

In order to find V ∗, we can use value iteration:

• Initialize: V (s) = 0 for all states s.



• Update step (Bellman operator):

V ′(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V (s′)

]
, ∀s (8)

• V ← V ′

where we iterate until convergence of V , which is guaranteed. With our converged V , we can then
find π∗ as in Equation 7.

Policy Iteration Another approach to planning is called policy iteration. To do policy iteration,
we evaluate a proposed policy π by finding V π as in Equation 4. This is Evaluation step (E step).
Then, we do a policy improvement step (I step) by the equation

π′(s)← argmax
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V π(s′)

]
, ∀s (9)

We repeat the E and I steps until the policy π converges (stops changing).

Note that policy iteration takes more computation per iteration, but tends to converge faster in
practice.

2.3 Exercise: Markov Decision Process

(Sutton & Barto 2012) Consider an MDP on the following grid:

A

B

At each square, we can go left, right, up, or down. Normally we get a reward of 0 from moving,
but if we attempt to move off the grid, we get a reward of −1 and stay where we are. Also, if we
move onto square A, we get a reward of 10 and are teleported to square B.

Suppose our actions also fail with probability 0.5, i.e. with probability 0.5 we stay on the current
square. Also suppose our MDP is infinite horizon, and take γ = 0.9 to be the discount factor.

1. Defining the MDP Identify the states S, actions A, rewards, and transition probabilities
p(s′|s, a) in this problem.

2. Policy Evaluation Suppose π is the policy where we always choose to go right. Write the
equations to find the values V π(s).

3. Value Iteration Write the second iteration of value iteration, i.e. starting by initializing
V (s) = maxa∈A r(s, a).

4. Policy Iteration Write the first iteration of policy iteration, starting with V π(s) = 0 for all
s. (We could also initialize a policy, and do the Evaluation step to get started.)



Solution:

1. Defining the MDP
There are 9 states, one for each square of the grid, which we will denote as (i, j) for i = 0, 1, 2
(rows) and j = 0, 1, 2 (columns), where (0, 0) is the top left corner. There are 4 actions (one
for each direction), call them L,R,U,D.

We will define r(s, a) for a state-action pair as the expected reward from taking action a in
state s; for example, r((0, 0), R) = 0.5× 0 + 0.5× 10 = 5.1

The probabilities of transition between any two valid states are all 0.5, and the probabilities
of remaining at any state are all 0.5 (except for moving off the edge of the board, where the
probability is 1 of staying). In addition, a successful transition into state A results in the
agent being in state B (teleportation!).

2. Policy Evaluation
Recall the policy evaluation equations

V π(s) = r(s, π(s)) + γ
∑
s′∈S

p(s′|s, π(s))V π(s′)

We have

V π((0, 0)) = 5 + (0.9)(0.5× V π((0, 0)) + 0.5× V π((2, 1))

V π((0, 1)) = 0 + (0.9)(0.5× V π((0, 1)) + 0.5× V π((0, 2))

V π((0, 2)) = −0.5 + (0.9)V π((0, 2))

V π((1, 0)) = 0 + (0.9)(0.5× V π((1, 0)) + 0.5× V π((1, 1))

V π((1, 1)) = 0 + (0.9)(0.5× V π((1, 1)) + 0.5× V π((1, 2))

V π((1, 2)) = −0.5 + (0.9)V π((1, 2))

V π((2, 0)) = 0 + (0.9)(0.5× V π((2, 0)) + 0.5× V π((2, 1))

V π((2, 1)) = 0 + (0.9)(0.5× V π((2, 1)) + 0.5× V π((2, 2))

V π((2, 2)) = −0.5 + (0.9)V π((2, 2))

We can compactly write this in matrix form as follows:

V = r+ γTV

where

V = [V π((0, 0)), V π((0, 1)), V π((0, 2)),

V π((1, 0)), V π((1, 1)), V π((1, 2)),

V π((2, 0)), V π((2, 1)), V π((2, 2))]⊤

1An earlier version of this handout treated the reward as if the robot could control its environment, but its actuator
is noisy. Thus, we should adopt r(s, a) to be defined as the expected reward for taking action a in state s.



r = [5, 0,−0.5, 0, 0,−0.5, 0, 0,−0.5]⊤

T =



0.5 0 0 0 0 0 0 0.5 0
0 0.5 0.5 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0.5 0.5 0 0 0 0
0 0 0 0 0.5 0.5 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0.5 0.5 0
0 0 0 0 0 0 0 0.5 0.5
0 0 0 0 0 0 0 0 1


Note that the policy affects r and T. This linear system can be solved using standard methods
(e.g. Gaussian elimination). We find that (approximately)

V = [5.7,−4.1,−5,−3.4,−4.1,−5,−3.4,−4.1,−5]

3. Value Iteration
Note that initially we have

V ((0, 0)) = 5, V ((0, 1)) = 0, V ((0, 2)) = 5

V ((1, 0)) = 0, V ((1, 1)) = 5, V ((1, 2)) = 0

V ((2, 0)) = 0, V ((2, 1)) = 0, V ((2, 2)) = 0

For state (0, 0) we have the update:

V ′((0, 0)) = max[−0.5 + (0.9)× V ((0, 0)),

− 0.5 + (0.9)× V ((0, 0)),

5 + (0.9)(0.5× V ((0, 0)) + 0.5× V ((2, 1))),

0 + (0.9)(0.5× V ((0, 0)) + 0.5× V ((1, 0)))]

= max[−0.5 + (0.9)(5),

− 0.5 + (0.9)(5),

5 + (0.9)(0.5× 5 + 0.5× 0),

0 + (0.9)(0.5× 5 + 0.5× 0)]

= 7.25

by taking the max over each of the four directions (left, up, right, down in that order). You
can verify that the following hold for the remaining states:

V ′((0, 1)) = 2.25, V ′((0, 2)) = 7.25

V ′((1, 0)) = 2.25, V ′((1, 1)) = 7.25, V ′((1, 2)) = 2.25

V ′((2, 0)) = 0, V ′((2, 1)) = 2.25, V ′((2, 2)) = 0



4. Policy Iteration
Let’s first do the I step (policy Improvement) to find the new policy π′. For (0, 0), considering
that we assume V π(s) under the current policy, we have

π′((0, 0)) = argmax
a∈A

[−0.5,−0.5, 5, 0] = R

For other states, we get

π′((0, 0)) = R, π′((0, 1)) = R, π′((0, 2)) = L

π′((1, 0)) = R, π′((1, 1)) = U, π′((1, 2)) = D

π′((2, 0)) = R, π′((2, 1)) = R, π′((2, 2)) = U

breaking ties arbitrarily.

Next we do the E step (Evaluation). This is policy evaluation, and we can write our equation
as V = r+ γTV, where based on the current policy π′ we have

r = [5, 0, 5, 0, 5, 0, 0, 0, 0]⊤

T =



0.5 0 0 0 0 0 0 0.5 0
0 0.5 0.5 0 0 0 0 0 0
0 0 0.5 0 0 0.5 0 0 0
0 0 0 0.5 0.5 0 0 0 0
0 0 0 0 0.5 0.5 0 0 0
0 0 0 0 0 0.5 0 0 0.5
0 0 0 0 0 0 0.5 0.5 0
0 0 0 0 0 0 0 0.5 0.5
0 0 0 0 0 0.5 0 0 0.5


Solving for V, we find that

V = [9.1, 7.5, 9.1, 7.5, 9.1, 0, 0, 0, 0]⊤

is the new estimate for V π′
.



3 Kalman Filters (Bonus Material)

Now consider the following dynamical system model:

zt+1 = Φzt + ϵt

xt = Azt + γt

where z are the hidden variables and x are the observed measurements. Φ and A are known
constants, while ϵ and γ are random variables drawn from the following normal distributions:

ϵt ∼ N (µϵ, σ
2
ϵ )

γt ∼ N (µγ , σ
2
γ)

This is called a (one-dimensional) linear Gaussian state-space model. It is closely related to an
HMM – try drawing out the graphical model! – but here the hidden states and the observations
are now continuous and normally distributed. Linear Gaussian state-space models have convenient
mathematical properties and can be used to describe noisy measurements of a moving object (e.g.
missiles, rodents, hands), market fluctuations, etc.

The Kalman filter is an algorithm to perform filtering in linear Gaussian state-space models, i.e.
to find the distribution of zt given observations x1, ..., xt. The distribution of zt |x1, ..., xs will be
N (µt|s, σ

2
t|s). If we start with µt−1|t−1 and σ2

t−1|t−1, the algorithm tells us to

1. Define the distribution of zt |x1, ..., xt−1 by computing µt|t−1 and σ2
t|t−1. This is called the

prediction step.

2. Define the distribution of zt |x1, ..., xt by computing µt|t and σ2
t|t. This is called the update

step.

The Kalman filter alternates between prediction and update steps, assimilating observations one
at a time. It requires one forward pass through the data, and is analogous to obtaining the α’s in
an HMM.


