
CS 181 Spring 2022 Section 10
Reinforcement Learning

Solutions

1 Introduction

In the reinforcement learning setting, we don’t have direct access to the transi-
tion distribution p(s′|s, a) or the reward function r(s, a) — information about
these only come to us through the outcome of the environment. This problem
is hard because some states can lead to high rewards, but we don’t know which
ones; even if we did, we don’t know how to get there!

To deal with this, in lecture, we discussed model-based and model-free re-
inforcement learning.

2 From Planning to Reinforcement Learning

Recall that MDPs are defined by a set of states, actions, rewards, and transi-
tion probabilities {S,A, r, p}, and our goal is to find the policy π∗ that maxi-
mizes the expected sum of discounted rewards.

In planning, we are explicitly provided with the model of the environment,
whereas in reinforcement learning, an agent does not have a model of the
environment to begin with. Instead, it must interact with the environment to
learn what its policy should be.

2.1 Concept Question

Would the following be problems more likely to be solved with MDP planning
and which through reinforcement learning?

• Finding the best route to take through a treacherous forest using a map.

xx MDP

• Bringing the new Boston Dynamics robot into a new obstacle course it
has never seen before.

xx Reinforcement Learning

3 Model-based Learning

For model-based learning, we estimate the missing world models: r(s, a) and
p(s′|s, a), and then use planning (value or policy iteration) to develop a policy
π.
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3.1 Concept Question

Can you think of a way to do this in practice? What are some downsides?

• xx One way to do this is to perform a number of random walks
(at each state, we take a random action, and we track the
rewards we get and the states we transition to).

For the transition model, we maintain counts on different next
states given (s, a) pairs, and we use this to update a Dirichlet
model for the distribution on p(·|s, a) for each s, a). For the re-
ward model, one simple approach would be to track the average
reward achieved for each state-action pair.

We can then use the transition and reward models for planning.
We would act according to the obtained plan, perhaps adding
some ϵ-greedy exploration. This will give us more environmen-
tal interaction data, and we can use it to update our reward
and transition models.

• xx A downside to model-based RL can be that it’s unecessarily
complex— suppose there are many states, in which case the
transition model p(s′|s, a) becomes huge, and it may be hard to
get a good estimate of the true model. This can make model-
based learning inefficient and difficult to generalize.

Also, recall that the goal is not to learn the transition model.
Rather, it is to learn an optimal policy, and so we may be doing
unnecessary work.

4 Model-Free Learning

In model-free learning, we are no longer interested in learning the transition
function and reward function. Instead, we are looking to directly infer the
optimal policy from samples of the world — that is, given that we are in state
s, we want to know the best action a = π∗(s) to take. This makes model-free
learning cheaper and simpler.

To do this, we look to learn the optimal Q-values, defined as

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)V ∗(s′), ∀s, a (1)

where V ∗(s) is the optimal value function. The value Q∗(s, a) is the value from
taking action a in state s and then following the optimal continuation from
the next state.
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By learning this Q-value function, Q∗, we also have the optimal policy,
with

π∗(s) = argmax
a

Q∗(s, a) (2)

To learn Q∗ we can perform a one-step decomposition, and we get an
alternate form of the Bellman equations which states that for an optimal policy
π∗,

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)max
a′∈A

[Q∗(s′, a′)], ∀s, a (3)

Intuitively, for an optimal policy, the Q value at the current state and
action should be equivalent to the current reward plus the maximum possible
expected future value from the next state.

The question then becomes how we can find the Q values that satisfy the
Bellman equations as written in Equation 3. There are two ways that we do
this. One is “on-policy” (SARSA) and one is “off-policy” (Q-learning).

4.1 Q values Example

In the above figure, suppose that the discount factor is 1.0 and the actions
are deterministic. The agent starts from state s1 and will finish in the state s5,
from which no more actions are taken. We can represent Q values as a table
of states and actions, as shown to the right. For these converged Q values
(corresponding to an optimal policy), we can quickly verify that the Q value
of a given state and action is the sum of the current reward and the maximum
of the Q value from the next state. We can read the optimal policy off the
table by selecting the action that maximizes the value of a given state. For
example, in state 1, we should take the blue action.
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4.2 Exploration vs. Exploitation

An RL agent also needs to decide how to act in the environment while collecting
observations. This gets to the key issue of exploration vs. exploitation.

In an exploitative approach, when we are in state s, we can simply take
action a = argmaxa∈AQ(s, a) based on our current estimate of the Q-function.

In an explorative approach, we want to ensure that we have visited enough
states and taken enough actions from those states to get good Q-function
estimates, and this can lead us to prefer to add some randomization to the
behavior of the agent.

4.2.1 Concept Question

What would be a problem if our approach was only exploitative? In practice,
how might we balance exploitation vs exploration?

• xx If we focus on exploitation and do not explore enough, we
might end up with a bad estimate of the Q-function and never
find the true best action. We want to balance these two— ex-
ploitation is a policy that is following the advice of the Q-value
estimates and useful when this knowledge is good, while explo-
ration is necessary to properly understand the MDP. Referring
back to example 4.1, we see that if we had not sufficiently ex-
plored from state 1, then the red action seems to be better to
take than the blue action, which actually results in the higher
overall value.

• xx In practice, ϵ-greedy is a sensible approach for allowing an
RL agent to explore and exploit while learning in an unknown
environment. In the ϵ-greedy method, we take argmaxa∈A Q(s, a)
with probability 1− ϵ, and pick a ∈ A uniformly at random with
probability ϵ (for some ϵ > 0).

5 On-Policy RL: SARSA

Whatever the behavior of the RL agent, a first way to update the Q-values is
an on-policy method.

Given current state s, current action a, reward r, next state s′, next action
a′ (s, a, r, s′, a, hence the name SARSA), the update is

Q(s, a)← Q(s, a) + αt [r + γQ(s′, a′)−Q(s, a)] (4)

This is known as the SARSA update (State-Action-Reward-State-Action),
since we look ahead to get the action π(s′). Here, αt, with 0 ≤ αt < 1 is the
learning rate at update t. γ is the discount factor.

Here, we are taking the difference between our current Q-value at a state-
action and the one that we predict using the current reward and the discounted
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Q-value following the policy. We update the Q(s, a) value in the direction of
this difference, which is known as the “temporal difference error.”

Since we follow π in choosing action a′, this gradient method is on-policy.
In particular, it learns Q-values that correspond to the behavior of the agent.
The SARSA update rule is like we’re doing a stochastic gradient descent for
one observation, looking to improve our estimate of Q(s, a).

Because SARSA is on-policy, it is not guranteed to converge to the optimal
Q-values. In order to converge to the optimal Q-values, SARSA needs (stated
informally):

• Visit every action in every state infinitely often

• Decay the learning rate over time, but not too quickly.1

• Move from ϵ-greedy to greedy over time, so that in the limit the policy is
greedy; e.g., it can be useful to set ϵ for a state s to c/N(s) where N(s)
is the number of times the state has been visited.

5.1 Concept Question

What would SARSA learn when following a fixed policy π? What is the tension
in reducing exploration ϵ in ϵ-greedy when using SARSA to learn the optimal
Q∗ values?

• xx The Q-values corresponding to policy π, i.e.

Qπ(s, a) = r(s, a) + γ
∑
s′

p(s′|s, a)Qπ(s′, π(s′)) (5)

• xx The tension with SARSA is that we need to both visit every
action in every state infinitely often (explore) but also eventu-
ally stop adding random exploration (exploit). This is often
called GLIE “greedy in the limit of infinite exploration.”

6 Off-Policy RL: Q-Learning

Whatever the behavior of the RL agent, a second way to update the Q-values
is an off-policy method.

Given current state s, current action a, reward r, next state s′, the update
in Q-learning is:

Q(s, a)← Q(s, a) + αt[r + γmax
a′

Q(s′, a′)−Q(s, a)] (6)

1For each (s, a) pair, we need
∑

t αt = ∞ for the periods t in which we update Q(s, a)
(don’t reduce learning rate too quickly), and

∑
t α

2
t <∞ (eventually learning rate becomes

small). A typical choice is to set the learning rate αt for an update on (s, a) to 1/N(s, a)
where N(s, a) is the number of times action a is taken in state s.
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Q-learning uses State-Action-Reward-State from the environment. It is
the max over actions a′ that makes this an ‘off-policy’ method. Here, we are
taking the difference between our current Q-value for a state-action and the
one that we predict using the current reward and the discounted Q-value when
following the best action from the next state. We update the Q(s, a) value to
reduce this difference, which is known as the “temporal difference error.”

We can see that the Q-learning update can be viewed as a stochastic gra-
dient descent for one observation, looking to find estimates of Q-values that
better approximate the Bellman equations.

Because Q-learning is off policy, it is guaranteed to converge to the optimal
Q-values as long as the following is true (stated informally):

• Visit every action in every state infinitely often

• Decay the learning rate over time, but not too quickly.2

6.1 Concept Question

Is the Q-learning update equal to the SARSA learning update in the case that
the behavior in SARSA is greedy and not ϵ-greedy?

• xx Yes! In this case, we can easily check that the two update
equations are equivalent because the next state action used in
the SARSA update is maxa′ Q(s′, a′), which is the same as in the
Q-learning update.

2For each (s, a) pair, we need
∑

t αt = ∞ for the periods t in which we update Q(s, a)
(don’t reduce learning rate too quickly), and

∑
t α

2
t <∞ (eventually learning rate becomes

small). A typical choice is to set the learning rate αt for an update on (s, a) to 1/N(s, a)
where N(s, a) is the number of times action a is taken in state s.
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7 Exercise: Model-free RL

Consider the same MDP below on the following grid.

A

B

At each square, we can go left, right, up, or down. Normally we get a reward
of 0 from moving, but if we attempt to move off the grid, we get a reward of
−1 and stay where we are. Also, if we move onto square A, we get a reward
of 10 and are teleported to square B. The discount factor is γ = 0.9.

Suppose an RL agent starts at the top left square, (0, 0), and follow an
ϵ-greedy policy. At the beginning, suppose Q(s, a) = 0 for all s, a, except
we know that we shouldn’t go off the grid, so that the values of Q for the
corresponding s, a pairs are −1 (ie. moving off the grid from position (0, 0)
to (−1, 0) is disallowed and corresponds with an initialization of Q(s, a) = −1).

The learning rate α = 0.1. With RL, the realized reward for an action will
depend on the state, the action, and whether or not the action succeeds.

1. For the first step, suppose ϵ-greedy tells the agent to explore, and the
agent selects right as its action (and this action succeeds). Write the
Q-learning update in step one.

2. Now write the SARSA update for step one, assuming that in addition
to right in step one, ϵ-greedy tells the agent to explore and go down in
the second step (and this action succeeds).

3. Are the updates the same? If not, why not?

Solution:

1. Our environment gives us r = 10 for succeeding with the right
action, and s′ = (2, 1) for the next state. For Q-learning, we can
use this first step and next state to update the value of Q(s, a)
for s = (0, 0), action a = R, and next state s′ = (2, 1) as follows

Q(s, a)← Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)) (7)

= 0 + (0.1)(10 + 0.9max{0,−1, 0, 0} − 0) = 1 (8)

2. With knowledge that in next state s′ = (2, 1) the action a′ is
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down, the SARSA method will update the Q-value for state
s = (0, 0) and action a = right as follows

Q(s, a)← Q(s, a) + α(r +Q(s′, a′)−Q(s, a)) (9)

= 0 + (0.1)(10 + (0.9)(−1)− 0) = 0.1(10− 0.9) = 0.91. (10)

3. This is a slight departure from the update done by Q-learning,
and reflects the “on-policy” nature of SARSA, since in this case
the action in next state s′ was a result of ϵ-exploration and not
a greedy choice.

8 TD update intuition (optional)

We parameterize Q(s, a;w) with parameters w, where ws,a = Q(s, a;w) is
a table of estimated Q values. We define a loss function which we want to
minimize:

L(w) =
1

2
Es,a

(
Q(s, a;w)− [r(s, a) + γ

∑
s′

p(s′|s, a)max
a′

Q(s′, a′;w)]

)2

(11)

We can optimize this via stochastic gradient descent. In order to get sam-
ples to perform gradient descent on, the idea is to approximate the loss by
sampling s, a, giving a single gradient descent step

∂L
∂ws,a

= Q(s, a;w)− [r(s, a) + γ
∑
s′

p(s′|s, a)max
a′

Q(s′, a′;w)] (12)

If we can obtain a sample for the next state s′ and the reward r from the
environment, we can approximate this as

∂L
∂ws,a

≈ Q(s, a;w)− [r + γmax
a′

Q(s′, a′;w)] (13)

This is the term that we will use to update our estimates for Q:

ws,a ← ws,a − η
∂L
∂ws,a

(14)

where η > 0 is the learning rate.
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