
CS 181 Spring 2022 Section 8

1 Bayesian Networks

A Bayesian network is a graphical model that represents random variables and their dependencies
using a directed acyclic graph. Bayesian networks are useful because they allow us to efficiently
model joint distributions over many variables by taking advantage of the local dependencies. With
Bayesian networks, we can easily reason about conditional independence and perform inference on
large joint distributions.

1.1 D-separation rules

Let XA and XB denote sets of variables that we are interested in reasoning about. XA and XB are
d-separated by a set of evidence XE if every undirected path from XA to XB is “blocked” by XE .
A path is blocked by evidence XE if EITHER:

1. There is a node Z with non-converging arrows on the path, and Z ∈ XE .

The shaded node indicates an evidence node.

2. There is a node Z with converging arrows on the path, and neither Z nor its descendants are
in XE .

Make sure to check every undirected path from XA to XB. Within each path, only one node Z
needs to fall under one of the two cases described above for the whole path to be blocked.

If XA and XB are d-separated by XE (i.e., all paths are blocked), then XA and XB are conditionally
independent given XE (XA ⊥ XB |XE).



2 Network Basics

A patient goes to the doctor for a medical condition, and the doctor suspects 3 diseases as the cause
of the condition. The 3 diseases are D1, D2, and D3, and they are independent from each other
(given no other observations). There are 4 symptoms S1, S2, S3, and S4, and the doctor wants to
check for presence in order to find the most probable cause. S1 can be caused by D1, S2 can be
caused by D1 and D2, S3 can be caused by D1 and D3, and S4 can be caused by D3. Assume all
random variables are Bernoulli, i.e. the patient has the disease/symptom or not.

• Q:Draw a Bayesian network for this problem with the variable orderingD1, D2, D3, S1, S2, S3, S4.

• Q: Write down the expression for the joint probability distribution given this network.

• Q: How many parameters are required to describe this joint distribution?

• Q: How many parameters would be required to represent the CPTs in a Bayesian network if
there were no conditional independences between variables?



• Q: What diseases do we gain information about when observing the fourth symptom (S4 =
true)?

• Q: Suppose we know that the third symptom is present (S3 = true). What does observing
the fourth symptom (S4 = true) tell us now?



3 D-Separation

As part of a comprehensive study of the role of CS 181 on people’s happiness, we have been col-
lecting important data from students. In an entirely optional survey that all students are required
to complete, we ask the following highly objective questions:

Do you party frequently [Party: Yes/No]?
Are you smart [Smart: Yes/No]?
Are you creative [Creative: Yes/No]?
Did you do well on all your homework assignments? [HW: Yes/No]
Do you use a Mac? [Mac: Yes/No]
Did your last major project succeed? [Project: Yes/No]
Did you succeed in your most important class? [Success: Yes/No]
Are you currently Happy? [Happy: Yes/No]

After consulting behavioral psychologists we build the following model:

Creative

Project Mac HW

Smart

Success Happy

Party

• Q: True or False: Party is independent of Success given HW .

• Q: True or False: Creative is independent of Happy given Mac.

• Q: True or False: Party is independent of Smart given Success.



• Q: True or False: Party is independent of Creative given Happy.

• Q: True or False: Party is independent of Creative given Success, Project and Smart.



4 Inference

Consider the following Bayesian network, where all variables are Bernoulli.

Ap(A = T ) = 0.2 B

p(B = T ) = 0.5

C p(C = T ) = 0.8

D E

A B p(D = T |A,B)

F F 0.9
F T 0.6
T F 0.5
T T 0.1

B C p(E = T |B,C)

F F 0.2
F T 0.4
T F 0.8
T T 0.3

• Q: What is the probability that all five variables are simultaneously false (F )?

• Q: What is the probability that A is false given that the remaining variables are all known
to be true (T )?



5 Variable Elimination in Bayesian Networks

We apply an inference algorithm called variable elimination to the following Bayesian network:

x1 x2

x3

x4

Assume that all of the random variables are Bernoulli, meaning their domain is {0, 1} with domain
size k = 2. In this network, we can encode the joint distribution as

p(x1, x2, x3, x4) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)

If we wanted to calculate the marginal distribution of x4 that is, have x4 be our query without any
evidence (conditioned on variables), we could naively marginalize out all other variables:

p(x4) =
∑
x1

∑
x2

∑
x3

p(x1, x2, x3, x4)

=
∑
x1

∑
x2

∑
x3

p(x1)p(x2)p(x3|x1, x2)p(x4|x3)

To calculate these sums, for each value of x4, we would need to do a sum-product that involves
summing over the k3 = 8 possible combinations of x1, x2, and x3. In general, the number of
combinations grows exponentially in the number of variables (O(kn) if you’re familiar with big-O
notation).

Note that Bayesian nets encode dependencies between variables, which we can use to calculate the
marginal distribution more efficiently. By reordering the sums and eliminating one variable at a
time, we derive the variable elimination procedure:

p(x4) =
∑
x1

∑
x2

∑
x3

p(x1)p(x2)p(x3|x1, x2)p(x4|x3)

=
∑
x3

p(x4|x3)
∑
x2

p(x2)
∑
x1

p(x3|x1, x2)p(x1)

=
∑
x3

p(x4|x3)
∑
x2

p(x2)p(x3|x2)

=
∑
x3

p(x4|x3)p(x3)

= p(x4)



Here, we eliminate x1 using a k by k matrix g1(x3, x2), because we have to sum over x1 for each
possible value of x2 and x3. Then we eliminate x2 with a K-dimensional vector g2(x3), likewise
because we sum over x2 for each possible value of x3. Lastly, we eliminate x3, which results in
a final K-dimensional vector of probabilities for x4. Notice that we have a poly-tree, and we’re
eliminating leaves first and working towards our query variable, x4.

In this way, we can perform the same computation in O(k3) time, because the longest elimination
step has to do k2 sum-product calculations for each element in the matrix g1(x3, x2), and each sum-
product calculation takes O(k) time (since we are summing over x1). Compare this polynomial-time
complexity (where we add the time taken for each elimination step, so our total time complexity
only depends on the longest step) with the exponential-time complexity (based on the number of
variables) of the naive approach.

Alternatively, we could have eliminated variables in a different order:

p(x4) =
∑
x1

∑
x2

∑
x3

p(x1)p(x2)p(x3|x1, x2)p(x4|x3)

=
∑
x1

p(x1)
∑
x2

p(x2)
∑
x3

p(x3|x1, x2)p(x4|x3)

=
∑
x1

p(x1)
∑
x2

p(x2)p(x4|x1, x2)

=
∑
x1

p(x1)p(x4|x1)

= p(x4)

Here, we eliminate x3, then x2, then x1. Notice that the ordering matters: eliminating x3 first
results in a k × k × k object g(x1, x2, x4), so our overall algorithm will run in O(k4) time. (Again,
note that we have to account for both the k3 sum-product calculations and the O(k) time to do
each calculation.)

In general, the computational cost of variable elimination depends on the number of variables in
these intermediate factors, in particular the largest object computed (‘tree-width’).



5.1 Exercise: Variable Elimination

Consider the Bayesian network described in above, and assume the following Conditional Proba-
bility Table (CPT). Let xi ∈ {0, 1} denote the values that variable Xi can take. Our goal is to find
p(x4).

x1 p(x1)

0 0.3
1 0.7

x2 p(x2)

0 0.6
1 0.4

x3 x1 x2 p(x3|x1, x2)
0 0 0 0.5
0 0 1 0.2
0 1 0 0.9
0 1 1 0.5
1 0 0 0.5
1 0 1 0.8
1 1 0 0.1
1 1 1 0.5

x4 x3 p(x4|x3)
0 0 0.7
0 1 0.1
1 0 0.3
1 1 0.9

1. Eliminate X1 first. Draw the resulting Bayesian network and compute the CPT.
2. Eliminate X3 first. Draw the resulting Bayesian network and compute the CPT.
3. How many sum-product calculations do each of these variable elimination orders require?

Which one is preferable?


