
CS 181 Spring 2022 Section 8
Solution

1 Bayesian Networks

A Bayesian network is a graphical model that represents random variables and their dependencies
using a directed acyclic graph. Bayesian networks are useful because they allow us to efficiently
model joint distributions over many variables by taking advantage of the local dependencies. With
Bayesian networks, we can easily reason about conditional independence and perform inference on
large joint distributions.

1.1 D-separation rules

Let XA and XB denote sets of variables that we are interested in reasoning about. XA and XB are
d-separated by a set of evidence XE if every undirected path from XA to XB is “blocked” by XE .
A path is blocked by evidence XE if EITHER:

1. There is a node Z with non-converging arrows on the path, and Z ∈ XE .

The shaded node indicates an evidence node.

2. There is a node Z with converging arrows on the path, and neither Z nor its descendants are
in XE .

Make sure to check every undirected path from XA to XB. Within each path, only one node Z
needs to fall under one of the two cases described above for the whole path to be blocked.

If XA and XB are d-separated by XE (i.e., all paths are blocked), then XA and XB are conditionally
independent given XE (XA ⊥ XB |XE).



2 Network Basics

A patient goes to the doctor for a medical condition, and the doctor suspects 3 diseases as the cause
of the condition. The 3 diseases are D1, D2, and D3, and they are independent from each other
(given no other observations). There are 4 symptoms S1, S2, S3, and S4, and the doctor wants to
check for presence in order to find the most probable cause. S1 can be caused by D1, S2 can be
caused by D1 and D2, S3 can be caused by D1 and D3, and S4 can be caused by D3. Assume all
random variables are Bernoulli, i.e. the patient has the disease/symptom or not.

• Q:Draw a Bayesian network for this problem with the variable orderingD1, D2, D3, S1, S2, S3, S4.

A: Note that there are many valid networks (depending on the chosen variable ordering), some
more efficient (i.e. requiring fewer parameters) than others. Here is a compact representation
that comes from variable ordering D1, D2, D3, S1, S2, S3, S4. (Recall that all dependencies to
earlier variables need to be indicated with edges).

D1 D2 D3

S1 S2 S3 S4

• Q: Write down the expression for the joint probability distribution given this network.

A: p(D1, D2, D3, S1, S2, S3, S4)

= p(D1)p(D2)p(D3)p(S1|D1)p(S2|D1, D2)p(S3|D1, D3)p(S4|D3)

• Q: How many parameters are required to describe this joint distribution?

A:

Conditional Probability Table Number of Parameters

p(D1) 1
p(D2) 1
p(D3) 1
p(S1|D1) 2
p(S2|D1, D2) 4
p(S3|D1, D3) 4
p(S4|D3) 2

Total Number of Parameters 15

• Q: How many parameters would be required to represent the CPTs in a Bayesian network if
there were no conditional independences between variables?

A: The network would be structured as a clique, and considering orderD1, D2, D3, S1, S2, S3, S4,
the number of parameters for the CPTs would be 1 + 2 + 4 + 8 + 16 + 32 + 64 = 127.



Conditional Probability Table Number of Parameters

p(D1) 1
p(D2|D1) 2
p(D3|D1, D2) 4
p(S1|D1, D2, D3) 8
p(S2|D1, D2, D3, S1) 16
p(S3|D1, D2, D3, S1, S2) 32
p(S4|D1, D2, D3, S1, S2, S3) 64

Total Number of Parameters 127

(We can see there is no saving relative to specifying the joint probability distribution directly,
which would require 27 − 1 = 127 numbers.)

• Q: What diseases do we gain information about when observing the fourth symptom (S4 =
true)?

A: We have independence relations I(D1, S4) (since the path is blocked without observing
S3 and I(D2, S4) (since the path is blocked at both S2 and S3). What is left is dependence
between D3 and S4. Thus, we only learn information about D3.

• Q: Suppose we know that the third symptom is present (S3 = true). What does observing
the fourth symptom (S4 = true) tell us now?

A: With S3 = true, observing S4 = true now also gives us information about D1 (via
‘explaining away’, or using d-separation, because the D1 to S4 path is no longer blocked at
S3). We still don’t learn any information about D2 because the D2 to S4 path remains blocked
at S2.



3 D-Separation

As part of a comprehensive study of the role of CS 181 on people’s happiness, we have been col-
lecting important data from students. In an entirely optional survey that all students are required
to complete, we ask the following highly objective questions:

Do you party frequently [Party: Yes/No]?
Are you smart [Smart: Yes/No]?
Are you creative [Creative: Yes/No]?
Did you do well on all your homework assignments? [HW: Yes/No]
Do you use a Mac? [Mac: Yes/No]
Did your last major project succeed? [Project: Yes/No]
Did you succeed in your most important class? [Success: Yes/No]
Are you currently Happy? [Happy: Yes/No]

After consulting behavioral psychologists we build the following model:

Creative

Project Mac HW

Smart

Success Happy

Party

• Q: True or False: Party is independent of Success given HW .

A: False; there is a path that is not blocked: Party − HW − Smart − Project − Success
has neither a converging arrows not in the set of evidence or a non-converging arrows in the set.

• Q: True or False: Creative is independent of Happy given Mac.

A: False; there is a path that is not blocked: Creative− Project− Success−Happy

• Q: True or False: Party is independent of Smart given Success.

A: False; there is a path that is not blocked between Party and Smart: the path Party −
HW − Success is not blocked because the converging arrows node at HW has a descendant
(Success) in the evidence.



• Q: True or False: Party is independent of Creative given Happy.

A: False; there is a path that is not blocked between Party and Creative through the con-
verging arrows at Happy. There are actually multiple not-blocked paths – can you find them?

• Q: True or False: Party is independent of Creative given Success, Project and Smart.

A: True! All paths between Party and Creative are blocked. Working from Party, the
paths that come through Happy are blocked there (converging arrows, no evidence). Those
that come through HW and Smart are blocked at Smart. Those that come through
HW,Success, Project are blocked at Project.



4 Inference

Consider the following Bayesian network, where all variables are Bernoulli.

Ap(A = T ) = 0.2 B

p(B = T ) = 0.5

C p(C = T ) = 0.8

D E

A B p(D = T |A,B)

F F 0.9
F T 0.6
T F 0.5
T T 0.1

B C p(E = T |B,C)

F F 0.2
F T 0.4
T F 0.8
T T 0.3

• Q: What is the probability that all five variables are simultaneously false (F )?

A:

p(A = F,B = F,C = F,D = F,E = F ) =

p(A = F )p(B = F )p(C = F )p(D = F |A = F,B = F )p(E = F |B = F,C = F )

= (0.8)(0.5)(0.2)(0.1)(0.8)

= 0.0064

• Q: What is the probability that A is false given that the remaining variables are all known
to be true (T )?

A: For this part, we need to calculate p(A = F |B = T,C = T,D = T,E = T ).

By the definition of conditional probability,

p(A = F |B = T,C = T,D = T,E = T )

=
p(A = F,B = T,C = T,D = T,E = T )

P (B = T,C = T,D = T,E = T )

=
p(A = F,B = T,C = T,D = T,E = T )

P (A = F,B = T,C = T,D = T,E = T ) + P (A = T,B = T,C = T,D = T,E = T )



The joint probabilities p(A = F,B = T,C = T,D = T,E = T ) and

p(A = T,B = T,C = T,D = T,E = T ) can be computed as:

p(A = F,B = T,C = T,D = T,E = T )

= p(A = F )p(B = T )p(C = T )p(D = T |A = F,B = T )p(E = T |B = T,C = T )

= (0.8)(0.5)(0.8)(0.6)(0.3)

= (0.05760)

p(A = T,B = T,C = T,D = T,E = T )

= p(A = T )p(B = T )p(C = T )p(D = T |A = T,B = T )p(E = T |B = T,C = T )

= (0.2)(0.5)(0.8)(0.1)(0.3)

= (0.00240)

Finally, we can plug this in to get:

p(A = T |B = F,C = F,D = F,E = F ) =
.05760

.05760 + .00240
= .96



5 Variable Elimination in Bayesian Networks

We apply an inference algorithm called variable elimination to the following Bayesian network:

x1 x2

x3

x4

Assume that all of the random variables are Bernoulli, meaning their domain is {0, 1} with domain
size k = 2. In this network, we can encode the joint distribution as

p(x1, x2, x3, x4) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)

If we wanted to calculate the marginal distribution of x4 that is, have x4 be our query without any
evidence (conditioned on variables), we could naively marginalize out all other variables:

p(x4) =
∑
x1

∑
x2

∑
x3

p(x1, x2, x3, x4)

=
∑
x1

∑
x2

∑
x3

p(x1)p(x2)p(x3|x1, x2)p(x4|x3)

To calculate these sums, for each value of x4, we would need to do a sum-product that involves
summing over the k3 = 8 possible combinations of x1, x2, and x3. In general, the number of
combinations grows exponentially in the number of variables (O(kn) if you’re familiar with big-O
notation).

Note that Bayesian nets encode dependencies between variables, which we can use to calculate the
marginal distribution more efficiently. By reordering the sums and eliminating one variable at a
time, we derive the variable elimination procedure:

p(x4) =
∑
x1

∑
x2

∑
x3

p(x1)p(x2)p(x3|x1, x2)p(x4|x3)

=
∑
x3

p(x4|x3)
∑
x2

p(x2)
∑
x1

p(x3|x1, x2)p(x1)

=
∑
x3

p(x4|x3)
∑
x2

p(x2)p(x3|x2)

=
∑
x3

p(x4|x3)p(x3)

= p(x4)



Here, we eliminate x1 using a k by k matrix g1(x3, x2), because we have to sum over x1 for each
possible value of x2 and x3. Then we eliminate x2 with a K-dimensional vector g2(x3), likewise
because we sum over x2 for each possible value of x3. Lastly, we eliminate x3, which results in
a final K-dimensional vector of probabilities for x4. Notice that we have a poly-tree, and we’re
eliminating leaves first and working towards our query variable, x4.

In this way, we can perform the same computation in O(k3) time, because the longest elimination
step has to do k2 sum-product calculations for each element in the matrix g1(x3, x2), and each sum-
product calculation takes O(k) time (since we are summing over x1). Compare this polynomial-time
complexity (where we add the time taken for each elimination step, so our total time complexity
only depends on the longest step) with the exponential-time complexity (based on the number of
variables) of the naive approach.

Alternatively, we could have eliminated variables in a different order:

p(x4) =
∑
x1

∑
x2

∑
x3

p(x1)p(x2)p(x3|x1, x2)p(x4|x3)

=
∑
x1

p(x1)
∑
x2

p(x2)
∑
x3

p(x3|x1, x2)p(x4|x3)

=
∑
x1

p(x1)
∑
x2

p(x2)p(x4|x1, x2)

=
∑
x1

p(x1)p(x4|x1)

= p(x4)

Here, we eliminate x3, then x2, then x1. Notice that the ordering matters: eliminating x3 first
results in a k × k × k object g(x1, x2, x4), so our overall algorithm will run in O(k4) time. (Again,
note that we have to account for both the k3 sum-product calculations and the O(k) time to do
each calculation.)

In general, the computational cost of variable elimination depends on the number of variables in
these intermediate factors, in particular the largest object computed (‘tree-width’).



5.1 Exercise: Variable Elimination

Consider the Bayesian network described in above, and assume the following Conditional Proba-
bility Table (CPT). Let xi ∈ {0, 1} denote the values that variable Xi can take. Our goal is to find
p(x4).

x1 p(x1)

0 0.3
1 0.7

x2 p(x2)

0 0.6
1 0.4

x3 x1 x2 p(x3|x1, x2)
0 0 0 0.5
0 0 1 0.2
0 1 0 0.9
0 1 1 0.5
1 0 0 0.5
1 0 1 0.8
1 1 0 0.1
1 1 1 0.5

x4 x3 p(x4|x3)
0 0 0.7
0 1 0.1
1 0 0.3
1 1 0.9

1. Eliminate X1 first. Draw the resulting Bayesian network and compute the CPT.
2. Eliminate X3 first. Draw the resulting Bayesian network and compute the CPT.
3. How many sum-product calculations do each of these variable elimination orders require?

Which one is preferable?

Solution

1. The resulting network is:

X2

X3

X4

The variable elimination process eliminatesX1 by marginalizing outX1: p(x3|x2) =
∑

x1
p(x3|x1, x2)p(x1).

For example:

p(X3 = 0|X2 = 0) =
∑

x1∈{0,1}

p(X3 = 0|X1 = x1, X2 = 0)p(X1 = x1)

= 0.5 · 0.3 + 0.9 · 0.7
= 0.78

This is a sum-product calculation, and we need to do one for each value of X2 and X3. Thus,
there are four sum-product calculations in total. The resulting CPT is:



x3 x2 p(x3|x2)
0 0 0.78
0 1 0.41
1 0 0.22
1 1 0.59

2. The resulting network is

X1 X2

X4

The variable elimination process eliminates X3 by marginalizing out X3: p(x4|x1, x2) =∑
x3

p(x4|x3)p(x3 | x1, x2). This would be the first intermediate term. For example:

p(X4 = 0|X1 = 0, X2 = 0) =
∑

x3∈{0,1}

p(X4 = 0|X3 = x3)p(X3 = x3|X1 = 0, X2 = 0)

= 0.7 · 0.5 + 0.1 · 0.5
= 0.40

We need to do this for each combination of values for X1, X2 and X4. Thus, there are eight
sum-product calculations in total. The resulting CPT is:

x4 x1 x2 p(x4|x1, x2)
0 0 0 0.40
0 0 1 0.22
0 1 0 0.64
0 1 1 0.40
1 0 0 0.60
1 0 1 0.78
1 1 0 0.36
1 1 1 0.60

3. In these variable elimination operations, we need to compute intermediate terms. The cost of
computing these depends on the number of variables that they mention, since each variable
increases the number of required sum-product calculations by a factor of k = 2.

For the first ordering, the intermediate terms are:

• p(x3 |x2): mentions x2 and x3, and thus requires four sum-product calculations (for each
row in the original CPT)

• p(x3): mentions x3 and thus requires two sum-product calculations

• p(x4): mentions x4 and thus requires two sum-product calculations



We have a total of 4 + 2 + 2 = 8 sum-product calculations.

For the second ordering, the intermediate terms are:

• p(x4 |x1, x2): mentions x1, x2 and x4, and thus requires eight sum-product calculations
(for each row in the original CPT)

• p(x4 |x1): mentions x1 and x4, and thus requires four sum-product calculations

• p(x4): mentions x4 and thus requires two sum-product calculations

We have a total of 8 + 4 + 2 = 14 sum-product calculations.

Thus, we see that the first ordering is preferable since it requires fewer computational steps.

End Solution


