
CS 181 Spring 2022 Section 7
Mixture Models and Principal Component Analysis

1 Mixture Models

1.1 Motivation

Textbook sections 9.1, 9.2.
A mixture model is a type of probabilistic model for unsupervised learning. Let’s motivate
the need for mixture models through an example:

Example: You run a poll of the CS181 teaching staff asking how many hours a week
they spend doing work for their hardest CS class. There are only 3 CS classes at Harvard
and every member of the teaching staff is taking at least one of the three. Using this, can
you figure out which staff members are in the same class? Here, we have some observed data

Data gathered

{xn}Nn=1 corresponding to the hours reported by each staff member. We also know that each
individual observation has a discrete latent variable zn that determines the data generating
process. In this case, zn is the class that that the nth staff member reported hours for. Note
that while zn is unknown, it influences the observed data (ie. some classes have a heavier
workload than others, so the CS class a staff member is taking impacts the hours they report).

There are K possible values for each zn, denoted {Ck}Kk=1 where each Ck is a one-hot encoded
vector of length K. In our example, K = 3 with C1 = [1, 0, 0] corresponding to the class
CS124, C2 = [0, 1, 0] corresponding to the class CS61, and C3 = [0, 0, 1] corresponding to
the class CS175. We can think of every observation xn as being generated by the following
process:

• Sample latent class zn from θ, the categorical distribution over {Ck}Kk=1 s.t.
p(z = Ck;θ) = θk. Call this sampled latent class CS.

1

• Given that zn = CS, sample xn from the distribution

p(x|z = CS;w)

This conditional distribution is a modeling assumption (which means we will give it to
you in this class), and is specified using unknown parameters w.

In our example, it might make sense to assume x ∼ p(x|z = Ck) = N (x;µk, σk), where
µk,Σk are the unknown mean and covariance of the number of hours the k-th class
takes a week.

The hypothetical data generating process

Comprehension Question: In our example, what is an intuitive explanation of what the
vector θ represents?

2 Expectation Maximization

Textbook sections 9.3, 9.4.
Expectation maximization is a general technique for maximum-likelihood estimation used
primarily for models with latent variables. Here we will show how to use EM to train a

2

mixture model, but EM is also used for a variety of other models!

Returning to our example of weekly homework hours, what are our unknowns?

1. The probabilities θ1, ..., θk with which we sample zn

2. The parameters w of p(x|z = Cs;w) (in our example these unknown parameters would
be µ1, µ2, µ3, σ1, σ2, σ3).

Our goals are to compute the MLE for the parameters above, and to estimate the latent
variable zn for each xn. Note that once we have the MLE for w,θ, it is easy to estimate zn
since we can just find the class Ck that maximizes p(zn = Ck;w, θ) ∝ p(xn|z;w,θ)p(z;θ).

2.1 The EM Algorithm

The likelihood of a datapoint can be written as

p(x;w,θ) =
∑
z∈Z

p(x, z;w,θ)

Unfortunately calculating the MLE is often computationally intractable, because the log-
likelihood is:

log p(x;w,θ) = log
∑
z∈Z

p(x, z;w,θ) (1)

There is no closed form for the MLE of the log-likelihood because it is the log of a sum of
expressions. We know the form of the model p(x, z;w,θ), but in general we cannot solve for
the (w,θ) which maximize the likelihood p(x;w,θ) in closed form.

Since finding the MLE directly is difficult, we will use expectation maximization: an ap-
proximate iterative approach. The steps of the algorithm are:

1. Initialize w(0),θ(0) randomly.

2. (E-step) Given the parameters from (1) find the likelihood that zn = Ck for each Ck.
Store these probabilities in a vector qn where the kth element of the vector is the
probability that zn = Ck. This is called a soft assignment :

qn,k := p(zn = Ck|xn;w
(t),θ(t)) ∝ p(xn|zn = Ck;w

(t))p(zn = Ck;θ
(t)) (2)

3. (M-step) Choose the value of w(t+1),θ(t+1) that maximizes the expected complete data
log likelihood.

w(t+1),θ(t+1) = argmax
w,θ

EZ|X

[
N∑

n=1

log p(xn, zn;w,θ)

]
(3)

3

Let’s expand out our expression for the expected complete data log likelihood:

EZ|X [log(p(X|Z)] = EZ|X

[
N∑

n=1

log p(xn|zn;w) + log p(zn; θ)

]

=
N∑

n=1

EZ|X [log p(xn|zn;w) + log p(zn; θ)]

Taking the expectation gives us

N∑
n=1

K∑
k=1

p(zn = Ck|xn) [log p(xn|zn = Ck;w) + log p(zn = Ck;θ)]

=
N∑

n=1

K∑
k=1

qn,k [log p(xn|zn = Ck;w) + log p(zn = Ck;θ)]

Taking the derivative of this expression wrt w, setting equal to 0, and solving, will give
us its MLE. We can do the same thing for .

4. Repeat steps 2 and 3 until the MLE’s of w and θ converge.

2.2 Example: Gaussian Mixture Modeling

Lecture 14 and textbook section 9.5.
Let’s think about how we would apply EM to our problem. We already identified that our
latent variable zn for a staff member n is the CS class that they are actually taking. We
assume that the zn’s are sampled according to a categorical distribution with parameters
θ1, θ2, θ3 and that given we know what class Ck a student is taking the number of hours they
report will be ∼ N (µk, σ

2
k). We can now run the EM algorithm:

1. Randomly initialize θ1, θ2, θ3, µ1, µ2, µ3, σ1, σ2, σ3.

2. Calculate qn:

qn =

p(zn = C1|xn)
p(zn = C2|xn)
p(zn = C3|xn)

 ∝

θ1N (µ1, σ1)
θ2N (µ2, σ2)
θ3N (µ3, σ3)

 (4)

This is our new estimate of the distribution of zn given the data and most recent
estimate of θ,µ,σ.

3. Find the expected complete data log-likelihood:

EZ|X [L] =
N∑

n=1

K∑
k=1

qn,k ln θk + qn,k lnN (xn;µk, σk) (5)

4

and then optimize it for each of the parameters. Since we require that
∑

k θk = 1,
we must use Lagrange multipliers to incorporate this constraint before optimizing our
parameters. Thus, the equation we want to optimize is:

N∑
n=1

K∑
k=1

qn,k ln θk + qn,k lnN (xn;µk,σk)− λ

(
K∑
k=1

θk − 1

)

Now lets find the MLE of θk. We first take the derivative of the above expression wrt
θk:

N∑
n=1

qn,k ·
1

θk
− λ = 0 =⇒

∑N
n=1 qn,k
λ

= θk

Note that this implies
∑K

k=1 θk =
∑K

k=1

∑K
n=1 qn,k

λ
. By the constraint on mixture proba-

bilities,
∑K

k=1 θk = 1, so
∑K

k=1

∑K
n=1 qn,k

λ
= 1 =⇒ λ =

∑K
k=1

∑N
n=1 qn,k. Plugging this

back in we get

θk =

∑N
n=1 qn,k∑K

k=1

∑N
n=1 qn,k

=

∑N
n=1 qn,k
N

We can follow a similar process to find the MLE for µk and σk:

µ
(t+1)
k =

∑N
n=1 qn,kxn∑N
n=1 qn,k

(6)

σ
(t+1)
k =

∑N
n=1 qn,k(xn − µ

(t+1)
k)2∑N

n=1 qn,k
(7)

4. We repeat steps (2) and (3) until convergence.

GMM’s with multivariate normals are discussed in section 9.5 of the textbook.

2.3 Example: Modeling Biased Coins with a Binomial Mixture
Model

We’ve seen one case of mixtures of Gaussians, but we can consider mixtures of any distribu-
tion. In this example, we’ll take a look at EM for a binomial mixture model. To get started,
we consider a mixture of Bernoulli model, where xn ∼ p(xn|zn = Ck) = Bern(xn; pk).

Consider a setup where we have 2 biased coins C1 and C2, where Pr(C1 = 1) = π1 and
Pr(C2 = 1) = π2.

Data points xn are generated by:

• First, flip another biased coin Cz.

5

• If Cz is heads, then xn is the outcome of flipping C1.

• Otherwise, if Cz is tails, then xn is the outcome of flipping C2.

We can visualize this setup with the following diagram:

We wish to do inference to learn the unknown parameters of the coins (π1, π2), but the
only data we’re given is the outcomes of the flips (the xn’s).

1

Exercise 1. In this example, what is a reasonable choice for the latent variables zn?

To be consistent with Textbook Example 9.4.5, which uses the same model for the mixture
of multinomials, we’ll let xn be a one-hot vector s.t. xn,1 = 1 if the result of coin flip n was
heads; xn,2 = 1 otherwise. zn is a one-hot vector (of size 2) indicating which coin was flipped
to generate xn.

We’ll denote the vector of probabilities for Cz used to choose between coins as θ ∈ [0, 1]2,
where θ1 is the probability we’ll pick C1, and θ2 for C2. Finally, we’ll use π1,π2 ∈ [0, 1]2

to denote the biases for each coin, where π1 is the vector of probabilities for C1, etc. Our
model is a mixture of binomials where we have two binomials (coins 1 and 2), each with 2
outcomes (heads or tails). We let w := {θ,π}.

Now that we have the problem set up, let’s use expectation maximization to learn pa-
rameters w := {θ,π}!

1In fact, when we only get 1 coin flip per example, so that each xn is just a single head or tail, and this is a
mixture-of-Bernoulli model, we won’t be able to usefully identify the parameters. Consider the case of trying
to tell between two coins with π1 = 0.3 and π2 =0.7 and θ1 = θ2 = 0.5 and two coins with π1 = π2 = 0.5
and θ1 = θ2 = 0.5. These two parameterizations put the same likelihood on any data set. Still, the work we
do in this context extends to the case where xn represents multiple coin tosses per example and we have a
mixture-of-Binomial model. There we can usefully estimate the parameters of a mixture model. We get to
this in Exercise 4.

6

First we note that we can calculate qn from w(t) by writing:

qn =

[
p(zn = C1|xn;w

(t))
p(zn = C2|xn;w

(t))

]
(8)

∝
[
p(xn|zn = C1;w

(t))p(zn = C1;w
(t))

p(xn|zn = C2;w
(t))p(zn = C2;w

(t))

]
(9)

∝
[
(π11)

xn,1(π12)
xn,2θ1

(π21)
xn,1(π22)

xn,2θ2

]
(10)

We also have the complete data log-likelihood:

log p(xn, zn;w) = log p(xn|zn;w)p(zn;w) (11)

= log
2∏

k=1

(
θk

2∏
j=1

π
xn,j

kj

)zn,k

(12)

= zn,1 (log θ1 + xn,1 log π11 + xn,2 log π12)

+ zn,2 (log θ2 + xn,1 log π21 + xn,2 log π22)

(13)

log p(X,Z;w) =
N∑

n=1

log p(xn, zn;w) (14)

Now expand the expected complete data log-likelihood:

Lc =Z|X;w

[
N∑

n=1

log p(xn, zn;w)

]
(15)

=Z|X;w

[
N∑

n=1

log p(zn;w) + log p(xn|zn;w)

]
(16)

=
N∑

n=1

Z|X;w [log p(zn;w) + log p(xn|zn;w)] (17)

=
N∑

n=1

K∑
k=1

qn,k

(
log θk +

2∑
j=1

xn,j log πkj

)
(18)

=
N∑

n=1

qn,1 (log θ1 + xn,1 log π11 + xn,2 log π12) + qn,2 (log θ2 + xn,1 log π21 + xn,2 log π22)

(19)

Now we can use these derivations to do expectation maximization!:

1. Initialize w(0) randomly.

2. Use w(t) to calculate the vector of probabilities qn for the distribution of each zn (eq.
13).

7

3. Calculate the current expected likelihood using qn and w(t) (eq. 22).

This step is not strictly necessary for calculating updates, but can be helpful for a
variety of purposes, including debugging and testing convergence. Note that we need
both q and w(t) to get a value here.

4. Use q to calculate an updated set of parameters w(t+1) by maximizing the expected
likelihood as a function of w (eq. 22). Note that here we do not use w(t).

During optimization we need to enforce that
∑

k θk = 1 and that
∑

j πkj = 1, so that
the distributions parameterized by θ and π are valid.

In general, we can enforce this constraint using Lagrange multipliers. Here, in the 2-
dimensional case, we don’t need to use Lagrangian methods and can instead substitute
θ2 = 1− θ1 and πk2 = 1− πk1:

Lc =
N∑

n=1

qn,1 (log θ1 + xn,1 log π11 + xn,2 log(1− π11))

+ qn,2 (log(1− θ1) + xn,1 log π21 + xn,2 log(1− π21))

(20)

And then optimize w.r.t. θ1, π11, π21:

∂Lc

∂θ1
=

N∑
n=1

(
qn,1
θ1

− qn,2
1− θ1

)
= 0 (21)

∂Lc

∂π11

=
N∑

n=1

qn,1

(
xn,1

π11

− xn,2

1− π11

)
= 0 (22)

∂Lc

∂π21

=
N∑

n=1

qn,2

(
xn,1

π21

− xn,2

1− π21

)
= 0 (23)

From here we can solve for the optimal value of w (i.e. θ1, π11, π22), and set w(t+1) =
argmaxw Z|X;wLc.

Note: Above we show the derivation of all steps of the algorithm, but once you know
the closed form expression for w(t+1), the steps of the algorithm are really just initialization,
calculate the distribution qn from w(t), and then calculate w(t+1) from q. All the difficult
work is in deriving the update equations.

In more complicated models, the optimal w(t+1) may not have a closed form solution; in
these cases, instead we can do gradient descent to calculate the optimal value.

Exercise 2. Derive the closed form updates for θ(t),π(t) from the steps above.

Once we have an estimate for the MLE w, we can use it to do prediction of hidden states
for a new incoming coin flip, using step 2 from above. So, given a new coin flip, we can
predict whether it came from the first or the second coin.

8

Our model may not be very good, since in particular it is impossible to tell the difference
between having one coin chosen with high probability with π1 = 0.5 (and another picked
almost never with π2 = 0.1) and two equally likely coins with biases 0.4 and 0.6. In this case,
as discussed above, with only one observation for each coin we cannot successfully estimate
the parameters of the mixture model. This problem is due to the data setup: we need a
mixture of binomials, with multiple observations per coin.

Exercise 3. (Optional) Consider the following data generation process: the setup is the
same as above, but instead of flipping the chosen coin once, we flip it 10 times before choosing
a new coin.

1. Find an appropriate choice of latent variables zn and calculate the distribution of zn
given the data xn,j (where n iterates over each set of 10 coin flips, and j ∈ [1, 10]) and
an estimate for θ.

2. Find the expression for the expected complete data log-likelihood

3. Find the closed form update equations for θ(t), and compare them to the result from
Exercise 3.

3 Principal Component Analysis

3.1 Motivation

In many supervised learning problems, we try to find rich features that increase the expres-
sivity of our model. In practice, this often involves using basis functions to transform the
model input into a higher dimensional space (eg. given data x, using x and x2 as features,
or using features learned by a neural network). However, sometimes we want to reduce the
dimensionality of our data.

Exercise 4. Why would we want to reduce the dimensionality of our data? Can you think
of example cases?

When working with high-dimensional data, it is likely that not every feature will give us
completely new information, for example, multiple features may be correlated. The idea
that we might be able to reduce the dimensionality of our data by eliminating redundant
information is a powerful one, and is the essence of Principal Component Analysis (PCA).

Recall that our data X is an N x D dimensional matrix were each row corresponds to a
datapoint and each column corresponds to a feature. The goal of PCA is to re-express X
in terms of a new basis such that every column of this transformed matrix now gives us
completely new information (ie. the features are linearly independent). The columns of the
corresponding change-of-basis matrix are called principal components and are constructed in

9

such a way that each principal component accounts for more of the variance in our original
data than the next. After re-expressingX in terms of the principal components, we can make
a decision about how many columns of the new matrix we want to keep depending on how
much of the original variation we want to preserve and what our usecase is. For example,
if we wanted to plot the resulting data we might only keep the first two principal components.

3.2 Finding the lower dimensional representation

Let’s say we want to compress our D-dimensional data into K dimensions (K < D) ie. we
want to find K D-dimensional basis vectors u1, ...,uK such that we can represent xn as a
linear combination of them:

xn ≈ zn,1u1 + ...+ zn,kuk = Uzn

where zn,1, ..., zn,k are scalars and U is a matrix of all the basis vectors. We define the
reconstruction loss to be the distance from the approximation of each xn using the new basis
to xn itself:

L({zn},U) =
1

N

N∑
n=1

||xn −Uzn||22

The solution to the above loss is not unique! To find a unique solution, let’s impose the con-
straint that U must be orthonormal, meaning that for any distinct rows k, k′ in U, uk ·uk = 1
and uk ·uk′ = 0. Using orthonormal basis vectors yields the nice property that uT

k xn = zn,k.

Let’s subtract the mean of our data x̄ from each xn so that our bases capture variation
from the mean. Our loss function is now

L({zn},U) =
1

N

N∑
n=1

||(xn − x̄)−Uzn||22 s.t. U is orthonormal

Note that if K = D, then we could perfectly reconstruct xn since we’d be able to preserve
all the features. Thus, xn − x̄ =

∑D
k=1 zn,kuk. Thus, we can simplify our loss as follows:

L({zn},U) =
1

N

N∑
n=1

||
D∑

k=1

zn,kuk −
K∑
k=1

zn,kuk||22

=
1

N

N∑
n=1

||
D∑

k=K+1

zn,kuk||22

=
1

N

D∑
k=K+1

N∑
n=1

uT
k (xn − x̄)(xn − x̄)Tuk

=
D∑

k=K+1

uT
k

[
1

N

N∑
n=1

(xn − x̄)(xn − x̄)T

]
uk

10

The expression in the square brackets is the empirical covariance matrix of X! Finding
the directions of greatest variation correspond to finding the eigenvectors of this empirical
covariance matrix. Eigenvectors with a higher eigenvalue capture more variance in the data
than those with a lower eigenvalue.

To summarize, to perform PCA:

1. Center the data by subtracting the mean of each feature from each data point. Steps
2 - 5 will be performed on the centered data X: (N ×D).

2. Calculate the empirical covariance matrix:

S =
1

N
(

N∑
n=1

xnx
⊤
n) =

1

N
X⊤X

3. Decide how many dimensions K out of the original D we want to keep in the final
representation.

4. Find theK largest eigenvalues of S. TheK×1 eigenvectors (u1, . . . ,uK) corresponding
to these eigenvalues will be our lower-dimensional basis.

5. Reduce the dimensionality of a data point x by projecting it onto this basis yielding a
new reconstructed vector z:

z = UTx

Exercise 5. You are given the following data set:

x1 =

[
1
−1

]
, x2 =

[
1
2

]
, x3 =

[
−2
−1

]
You would like to use PCA to find a 1-dimensional representation of the data.

1. Plot the data set.

2. Compute the empirical covariance matrix S.

3. You find that S has eigenvector [−1 1]⊤ with eigenvalue 1 and eigenvector [1 1]⊤ with
eigenvalue 3. What is the (normalized) basis vector u1 of your 1-dimensional repre-
sentation? Add the basis vector u1 to your plot.

4. Compute the coefficients z1, z2, z3. Add the lower-dimensional representations
z1u1, z2u1, z3u1 to your plot. Based on your plot, what is the relationship between
ziu1 and xi with respect to the new basis?

5. Based on your plot, what would happen if you chose the unused eigenvector to be your
basis vector?

11

Exercise 6. Suppose that our data are centered (i.e., have sample mean 0). Recall that in
lecture, we showed that, when optimizing over (semi)-orthogonal matrices U ∈ Rm×d (i.e.,
where UTU = I) to minimize the reconstruction loss,

L(U) =
1

n

n∑
i=1

||xi −UUTxi||22,

we found that Ud, the matrix whose first d columns are (in order) the top d eigenvectors
of the empirical covariance matrix Σ = 1

n
XTX, will achieve the minimum (i.e., z = UTx

is the projection of x into d dimensions, and Uz is its reconstruction in Rm). In class, we
showed this for case when d = m − 1 by using Lagrange multipliers. Show this, in general,
for d.

Hint: you may use the following theorem: [Courant-Fischer] Let A be a symmetric
n × n matrix with eigenvalues λ1 ≤ · · · ≤ λn and corresponding eigenvectors v1, . . . ,vn.
Then

λ1 = min
||x||=1

xTAx

λ2 = min
||x||=1,x⊥v1

xTAx

...

λi = min
||x||=1,x⊥v1,x⊥v2,...,x⊥vi−1

xTAx

...

λn = min
||x||=1,x⊥v1,x⊥v2,...,x⊥vn−1

xTAx.

12

	Mixture Models
	Motivation

	Expectation Maximization
	The EM Algorithm
	Example: Gaussian Mixture Modeling
	Example: Modeling Biased Coins with a Binomial Mixture Model

	Principal Component Analysis
	Motivation
	Finding the lower dimensional representation

