
CS 181 Spring 2020 Section 7
Clustering
Solution

1 Part I

1.1 SVM Review

Support Vector Machines (SVMs) learn a decision boundary for binary classification prob-
lems using weight vector w and bias w0. For some point x, the boundary is defined
by:

w>x + w0 = 0

Given a setting of w, w0, we make a prediction on x by computing the discriminant func-
tion:

h(x, w, w0) = w>x + w0

and classify x as y = 1 if h > 0 and y = −1 otherwise. How good is our SVM? Of all the
ways to cleanly separate the two classes when possible, we should pick a boundary that
is furthest away from the closest points to the boundary! The signed orthogonal distance of
x from boundary:

r(x) =
w>x + w0

||w||
When points are classified correctly, this is negative for points i with yi = −1 and positive
for those with yi = 1. Then margin of the model is the smallest (over datapoints) unsigned
distance. Multiply with yi to get rid of signs:

margin(w, w0) = min
i

yir(xi) = min
i

yi(w>x + w0)

||w|| (want this to be large)

The SVM objective is to maximize the margin (which itself is defined as a min over
points!)! The 1

||w|| term can come out of the mini since it doesn’t depend on i. The ob-
jective to maximize is:

max
w,w0

1
||w|| min

i
yi

[
w>xi + w0

]
In this hard-margin formulation (soft-margin out of scope for these notes), if the data is
truly linearly separable than the margin satisfies:

margin(w, w0) = min
i

yir(xi) > 0.



Assuming data is separable, then the margin is some positive number. We can rescale
w, w0 so that this positive margin is specifically 1 or greater without changing the orien-
tation of the boundary. Then the boundary satisfies:

margin(w, w0) = min
i

yir(xi) > 1

Let’s re-write the objective to make this constraint explicit (don’t need to know how to jus-
tify to these re-writes, but see optimization theory if interested e.g. Stanford prof Boyd’s
videos on YouTube):

max
w,w0

1
||w|| s.t. ∀i, yi(w>xi + w0) ≥ 1

where s.t. stands for “such that” and ∀i means “for all i”. A different-looking objective
with the same solution is (w in numerator instead of denom):

min
w,w0

1
2
||w||2 s.t. ∀i, yi(w>xi + w0) ≥ 1

We will shortly see why the min-rewrite is useful. With either of the last two objectives,
we say they are “quadratic problems with linear constraints” which means they can be
solved easily!

1.2 Dual Formulation of SVMs

We will now show an alternate view on the SVM problem. It will reveal an algorithm that
look something analogous to KNN for regression. This new way of looking at SVMs will
highlight some convenient ways of dealing with high-dimensional data! We left off with
this loss function with constraints:

min
w,w0

1
2
||w||2 s.t. ∀i, yi(w>xi + w0) ≥ 1

We use an idea called the Lagrangian (see optimization theory) to re-write this con-
strained objective so that some of the constraints end up in the main function to be op-
timized. We introduce lagrange multipliers ai for each constraint (we have one for every

datapoint) similarly to how you used λ in HW2 to write ∑k πk = 1 as λ
(

∑k πk− 1
)

min
w,w0

[
max

ai

(
1
2

w>w−∑
i

ai

[
yi(w>xi + w0)− 1

])]
s.t. ai ≥ 0

where we also used that ||w||2 = w>w. Having changed the max to a min in the previ-
ous section and then applying the Lagrangian trick, we are left with a “min-max” prob-
lem that is quadratic with linear constraints. Beautifully/interestingly, some optimization



theory tells us this can (finally) be re-written as:

max
ai

∑
i

ai −
1
2 ∑

i
∑

j
aiajyiyj(x>i xj) s.t. ai ≥ 0, ∑

i
aiyi = 0

This has no w or w0! Just a constrained optimization problem in terms of the ai. We call
the set of points {xi|ai > 0}. the support vectors since they contribute to the objective
value at its optimum.

How do we predict without w, w0? Hidden in the last step that removed w, w0 from the
objective was the condition that w = ∑i aiyixi. Hidden also was a condition that tells us
to find any i with ai > 0 and to set w0 = yiw>xi. For a concise explanation see the cs181
SVM 2 lecture recap or David Sontag’s MIT notes. Then our discriminant can be written
as

h(x, w, w0) = w>x + w0

=⇒ h(x, a, w0) = ∑
i

aiyi(x>i x) + w0

That is, to predict, we take dot products of the test point x with the dataset support vectors
i.e. the set of xi with ai > 0. Qualitatively, this is like KNN: the complexity of prediction
depends on the data rather than a fixed parameter vector. However, when the number of
support vectors is small relative to the data dimension, this is cheap!

1.3 Basis Functions, Higher Dimensions, and Kernels

Suppose the data were not separable as-is but were separable using some basis φ. Lets
just replace any x with φ(x) in the final objective:

max
ai

∑
i

ai −
1
2 ∑

i
∑

j
aiajyiyj

(
φ(xi)

>φ(xj)
)

s.t. ai ≥ 0, ∑
i

aiyi = 0

and in the discriminant function:

h(x, a, w0) = ∑
i

aiyi

(
φ(xi)

>φ(x)
)
+ w0

Suppose we needed to use a fairly high-dimensional basis function to achieve separability
e.g. mapping to all powers up to 100. Well, notice that we don’t explicitly need the
values of each φ(xi) or φ(x) but we only need to know the result of the dot product of
basis vectors on pairs. Then, we can directly define the kernel function for two vectors
x, z

K(x, z) = φ(x)>φ(z)

https://harvard-ml-courses.github.io/cs181-web/recap11
https://harvard-ml-courses.github.io/cs181-web/recap11
http://people.csail.mit.edu/dsontag/courses/ml13/slides/lecture6.pdf


We can pick K such that we can compute it without ever computing an individual φ(x).
For example, let’s take

K(x, z) = (x>z)3

Example: Poly Kernels Lets consider x ∈ R2 and see how we would represent this as a
basis dot product. Write K(x, z) = (x>z)3 = (x1z1 + x2z2)

3 as a dot-product φ(x)>φ(z).
How is φ() defined?

(x>z)3 = (x1z1 + x2z2)
3

= (x1z1 + x2z2)(x1z1 + x2z2)(x1z1 + x2z2)

=
(

x2
1z2

1 + 2x1z1x2z2 + x2
2z2

2

)
(x1z1 + x2z2)

= x2
1z2

1(x1z1 + x2z2) + 2x1z1x2z2(x1z1 + x2z2) + x2
2z2

2(x1z1 + x2z2)

= x3
1z3

1 + x3
2z3

23x2
1z2

1x2z2 + 3x2
2z2

2x1z1

=
(

x3
1, x3

2, 3x2
1x2, 3x2

2x1

)>(
z3

1, z3
2, 3z2

1z2, 3z2
2z1

)
which implies the basis φ(x) = [x3

1, x3
2, 3x2

1x2, 3x2
2x1]. But we only picked x ∈ R2 and a

degree 3 basis. More generally if the data dimension is D and degree is q we have O(Dq)
terms! But if we just compute the function K we don’t first need to map to these high-
dimensional bases. Put another way, we can pick functions K that imply the use of very
high-dim bases!

1.3.1 What’s a valid kernel?

When training SVMs, we begin by computing the kernel matrix K, over our training data
{x1, . . . , xn}. The kernel matrix K ∈ Rn×n, defined as Ki,j = K(xi, xj), expresses the kernel
function applied between all pairs of training points.

Mercer’s theorem tells us that any function K that yields a positive semi-definite kernel
matrix forms a valid kernel, that is, corresponds to a matrix of dot-products under some
basis φ. Recall that a positive semi-definite matrix K requires z>Kz ≥ 0, ∀ z ∈ Rn. There-
fore instead of using an explicit basis, we can build kernel functions directly that fulfill
this property.



Example: Scaling to make a new kernel Suppose K is a valid kernel. Show that
Knew(x, x′) = cK(x, x′) for c > 0 is also a valid kernel. You can either show the posi-
tive semi-definite property or explicitly construct the basis.

We have the kernel matrix Knew = cK. We need v>Knewv = cv>Kv ≥ 0, which we know
to be true because K is positive semi-definite and c > 0.
Alternatively, take φnew(x) =

√
c φ(x).

1.4 Some more exercises
Exercise: Large Bases with Exp
Suppose x ∈ R and suppose we pick K(x, x′) = exp(xx′) where exp(z) = ez. If we re-
write K(x, x′) = φ(x)>φ(x′) then how is the implied φ defined for this choice of K and
what is the dimension of φ(x)? hint: use

ez = lim
i→∞

1 + z + . . . +
zi

i!

Solution:

Using the Taylor series expansion, we see that

K(x, x′) = exp(xx′) = lim
i→∞

(
1 + xx′ + · · ·+ (xx′)i

i!

)
So by definition of dot product

K(x, x′) =

[
1, x, . . . ,

xi

i!
, . . .

]>[
1, x′, . . . ,

(x′)i

i!
, . . .

]

So therefore

φ(x) =
[

1, x, . . . ,
xi
√

i!
, . . .

]>
.

This choice of K implies infinite-dimensional bases! That is, there is no finite-dimensional
vector φ such that K(x, x′) = φ(x)>φ(x′)!



Exercise: String Kernels
Let s and s′ be strings. To measure how similar s and s′ are, consider the “string kernel”
K(s, s′), which returns the total number of distinct substrings (of any length) that s and s′

have in common. For example, K(’aa’,’aab’) = 3 because the substrings ’’, ’a’, and
’aa’ are in common.

1. Compute K(’aza’,’zaz’).
2. What is the number of possible substrings of length 1, 2, and 3 in strings that are

composed from a 26-letter alphabet?
3. Suppose we wanted to project a string into a higher-dimensional space such that we

could represent via a 0 or 1 each of all possible substrings of length ≤ 3. How many
dimensions would we need?

4. How does directly defining this string kernel help over computing the basis func-
tions? Is it possible to compute the kernel itself efficiently?

Solution:

1. K(’aza’,’zaz’) = 5 because substrings ’’,’a’,’z’,’az’,’za’ are in com-
mon.

2. There are 261 = 26 possible substrings of length 1, 262 = 676 of length 2, and
263 = 17576 of length 3.

3. Then 26 + 676 + 17576 = 18278 features are required to represent all substrings of
length ≤ 3.

4. In computing the kernel, we don’t have to compute a feature representation for the
data points (i.e. we don’t have to find the presence/absence of each possible sub-
string for s and s′). Instead we can just write a program to find only the substrings
that are in common. We avoid having to use costly representations to calculate the
similarity between strings. This is the advantage of using kernel functions.



Exercise: Composing Kernels
A particularly nice corollary of Mercer’s theorem is that it allows us to build more
expressive kernels by composition. We already saw that positive scaling yields a new
kernel. Now, use Mercer’s theorem and the definition of a kernel matrix to prove that the
following compositions are valid kernels, assuming K(1) and K(2) are valid kernels.

[Note: It suffices to show that a kernel is valid either by finding a particular φ(x) that
produces it, or by showing that the kernel matrix is positive semi-definite. Recall that a
positive semi-definite matrix K requires z>Kz ≥ 0, ∀ z ∈ Rn.]

1. K(x, x′) = K(1)(x, x′) + K(2)(x, x′)
2. K(x, x′) = f (x)K(1)(x, x′) f (x′) where f : Rm to R

3. K(x, x′) = K(1)(x, x′)K(2)(x, x′)
[Hint: Use the property that for any φ(x), K(x, x′) = φ(x)>φ(x′) forms a positive
semi-definite kernel matrix. ]

4. K(x, x′) = exp
(

K(1)(x, x′)
)

5. Finally use this analysis and previous identities to prove the validity of the Gaussian
kernel:

K(x, x′) = exp

(
−||x− x′||22

2σ2

)



Solution: In these solutions, let φ(i)(x) and K(i) denote the underlying basis function and
kernel matrix for kernel K(i), respectively.

1. We have the kernel matrix K = K(1) + K(2). We need

v>Kv = v>(K(1) + K(2))v = v>K(1)v + v>K(2)v ≥ 0,

which we know to be true because K(1), K(2) are positive semi-definite.

Alternatively, take φ(x) =
[
φ
(1)
1 (x), . . . , φ

(1)
d (x), φ

(2)
1 (x), . . . , φ

(2)
d (x)

]>
, the concate-

nation of φ(1)(x), φ(2)(x)

2. Take φ(x) = f (x)φ(1)(x).

3. Take φ(x) =
[
φ
(1)
1 (x)φ(2)

1 (x), . . . , φ
(1)
1 (x)φ(2)

d (x), φ
(1)
2 (x)φ(2)

1 (x), . . . , φ
(1)
d (x)φ(2)

d (x)
]>

,

the flattened vector for outer product φ(1)(x)⊗φ(2)(x). The order of terms does not
matter.

4. (a) We have

K(x, x′) = exp
(

K(1)(x, x′)
)
= exp

(
φ(1)(x)>φ(1)(x′)

)
=

d

∏
i=1

exp
(

φ
(1)
i (x)φ(1)

i (x′)
)

We recognize the multiplicand to be a valid kernelThen, recognize that a prod-
uct of valid kernels is a valid kernel. Alternatively, write

K(x, x′) = exp(K(1)(x, x′)) = lim
i→∞

(
1 + φ(1)(x)>φ(1)(x′) + · · ·+ (φ(1)(x)>φ(1)(x′))i

i!

)

which can also be recognized to be valid given our previous conclusions.

5. • K0(x, x′) = x>x′ is a valid kernel by definition of the kernel (it is the inner
product of x and x′).

• Thus K1(x, x′) = exp(2x>x′) is also a valid kernel

• Note that K(x, x′) = exp(−x>x) exp(2x>x′) exp(−x′>x′) = f (x)K1 f (x′), where
f (x) = exp(−x>x).

• We proved K(x, x′) is a kernel.

Note: a common mistake is saying exp(−x>x) is a kernel. It is not.



2 Part II

2.1 Motivation

We now move onto unsupervised learning, where the objective is to learn the structure
of unlabeled data. In other words, we are looking for groups, or clusters among the data.
Clustering algorithms are useful not only for finding groups in data, but also to extract
features of the data that summarize the most important information about the data in a
compressed way.

2.2 Setup

For most clustering algorithms, we need some kind of a metric to specify the notion of
”distance” between the data points.

Now that the metric is well-defined, the next thing we need to do is to decide how many
groups we want. Sometimes you know the ideal number of groups in advance (e.g. clus-
tering the 26 letters in the alphabet). Other times, you need to decide if you’d like a more
compressed representation with more information loss by having the number of groups
small, or a less compressed representation with less information loss by having the num-
ber of groups large.

Suppose our data set is {xi}n
i=1, then our objective is to find the ideal assignment of the

data set to the clusters, by assigning to each of the n data points, a binary responsibility
vector ri, which is all zeros except one component, which corresponds to the assigned
cluster.

2.3 K-Means Algorithm

The idea is to represent each cluster by the point in data space that is the average of
the data assigned to it. For some choice of K and random initialization of clusters, the
K-Means Algorithm (also called Lloyd’s algorithm) is:

Repeat until convergence (none of the responsibility vectors change):

1. For each data point, update its responsibility vector by assigning it to the cluster
with the closest mean.

2. For each cluster, {µk}K
k=1, update its mean to be the mean of the data points currently

assigned to that cluster.



2.3.1 Derivation

We begin by defining a loss function that the K-Means Algorithm minimizes via coordi-
nate descent:

L({ri}n
i=1, {µk}

K
k=1) =

n

∑
i=1

K

∑
k=1

rik||xi − µk||
2

First, we want to choose ri that minimizes the loss, holding all else constant. This is when
we assign data points to the clusters with means closest to them:

rik =

{
1 if k = argmink′ ||xi − µk′ ||
0 otherwise

This is the first step of each iteration of the K-means algorithm!

Second, we want to choose µk that minimizes the loss, holding all else constant. For a
given k, the squared loss is:

L(µk) =
n

∑
i=1

rik||xi − µk||
2

=
n

∑
i=1

rik(xi − µk)
T(xi − µk)

Taking the derivative and setting it to zero,

∂L(µk)

∂µk
= −2

n

∑
i=1

rik(xi − µk) = 0

µk =
∑n

i=1 rikxi

∑n
i=1 rik

This is the second step of each iteration of the K-means algorithm!

2.3.2 Number of Clusters

There is not an especially well justified method to choose the number of clusters when
using K-means. One approach is to plot K vs the objective criterion, and look for a “knee”
or “kink” where progress slows down.

2.3.3 Notes

Lloyd’s algorithm finds a locally optimal solution.



It is generally a good idea to standardize the data to account for unsatisfying result due
to dimension mismatch.

Lastly, when for the metric we are using for the given data set, a ”mean” does not make
sense, we might instead use a K-Medoids Algorithm. This algorithm requires the cluster
centers to be a data point in the data set.

2.4 Hierarchical Agglomerative Clustering

Hierarchical clustering constructs a tree over the data, where the leaves are individual
data items, while the root is a single cluster that contains all of the data. When drawing
the dendrogram, for the clustering to be valid, the distances between the two groups
being merged should be monotonically increasing. The algorithm is as follows:

1. Start with n clusters, one for each data point.

2. Measure the distance between clusters. This will require an inter-cluster distance
measurement that we will define shortly.

3. Merge the two ‘closest’ clusters together, reducing the number of clusters by 1.
Record the distance between these two merged clusters.

4. Repeat step 2 until we’re left with only a single cluster.

The main decision in using HAC is what the distance criterion should be between groups.

2.4.1 The Min-Linkage Criterion

For two groups indexed by i and i′, the idea is to merge groups based on the shortest
distance over all possible pairs:

DISTmin({xi}n
i=1, {xi′}n′

i′=1) = min
i,i′
||xi − xi′ ||.

2.4.2 The Max-Linkage Criterion

For two groups indexed by i and i′, the idea is to merge groups based on the largest
distance over all possible pairs:

DISTmax({xi}n
i=1, {xi′}n′

i′=1) = max
i,i′
||xi − xi′ ||

2.4.3 The Average-Linkage Criterion

For two groups indexed by i and i′, the idea is to average over all possible pairs between
the groups:

DISTavg({xi}n
i=1, {xi′}n′

i′=1) =
1

nn′
n

∑
i=1

n′

∑
i′=1
||xi − xi′ ||



2.4.4 The Centroid-Linkage Criterion

For two groups indexed by i and i′, the idea is to look at the difference between the
groups’ centroids:

DISTcent({xi}n
i=1, {xi′}n′

i′=1) = ||
(

1
n

n

∑
i=1

xi

)
−
(

1
n′

n′

∑
i′=1

xi′

)
||



2.4.5 Exercise on your own: K-means and HAC

What are three important differences between K-means and HAC?

K-Means has exactly K clusters whereas HAC can be used in a way where the number
of clusters are determined after the fact, via inspecting the dendrogram. K-Means is ran-
domized: the final clusters depend on the initial random centers whereas HAC is deter-
ministic. HAC forms a hierarchy, which can provide additional understanding relative to
a flat clustering.



2.4.6 Exercise on your own: Scaling to Large Dimensions

Explain the ‘curse of dimensionality’ and how it is related to HAC.
The curse of dimensionality refers to the problem where distances become meaningless
in very large dimensional spaces. The problem is that the distance between two examples
with some informative features but lots and lots of random features will be approximately
the same (try this out in simulation if you don’t see why!).

This means that non-parametric (‘instance based’) methods such as HAC that use pair-
wise distances between examples (vs between examples and prototypes in K-means) be-
come less useful in higher dimensions.


