
CS 181 Spring 2022 Section 2 Notes:
Probabilistic Regression, Classification

1 Probabilistic Regression (Review)

The idea behind probabilistic regression is to assume that there is a “story” for how the data were
created. For a model parameterized by θ, the likelihood of the data D = {(xi, yi)}Ni=1, xi ∈ Rm,
yi ∈ R appearing, given the specific parameter θ is defined as:

L(θ|D) = p(D|θ), which is often also written as f(D|θ).

1. Note that θ may contain multiple elements!

2. The value of θ that maximizes the likelihood is called the maximum likelihood estimate
or MLE. We find the MLE by taking the derivative of the likelihood (or log-likelihood, see
below), setting it equal to 0, and solving for θ. Rigorously, we also should verify the second
derivative to be negative, but in practice, this may be occasionally omitted.

3. Note that in other courses like Stat 111, we might write L(θ;D), instead of L(θ|D). They
mean exactly the same thing.

4. For those of you who have taken Stat 110 and/or Stat 111, f(D|θ) is also known as the “joint
PDF” of the data. However, in statistics and machine learning, there is a slight difference
between the joint PDF f(D|θ) and the likelihood function L(θ|D), even though they are math-
ematically identical: the likelihood function is interpreted as a function of the parameter(s) θ,
while the joint PDF is interpreted as a function of the observed data.

5. If we want, we can further add a generative story for θ (and make it random). This is called
the prior distribution, or just prior of θ: p(θ)

Now, onto probabilistic regression itself:

1. For probabilistic regression, we modeled the conditional distribution, p(y|x), with a target
value yi Normally distributed with mean w⊤xi and variance σ2.

2. We showed that finding parameters w that minimizes the negative log-likelihood (see below
for explanation) of labels y given design matrix X gives the same expression for the optimal
parameters w∗ as from using ordinary least squares regression.

3. Later we will also see a “full Bayes” approach where we also reason about priors on the
parameters θ.

A quick addendum: what (else) can we do with our generative model?

1. Based on the generative model, and using Bayes’ rule, we can find the posterior distribution
for θ

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ p(D|θ)p(θ)

Note that L(θ|D) is NOT the same thing as p(θ|D). This may seem confusing, but just re-
member that L(θ|D) = p(D|θ)! So, in other words, we have the following:

p(θ|D) ∝ L(θ|D)p(θ)

Again, this is confusing! Please read this line again. Some of you may know this distinction
as the Bayesian vs. Frequentist schools of statistics.

2. The value θ that maximizes the posterior distribution is called the maximum aposteriori or
MAP estimate.

3. A good way to remember the posterior distribution is the saying: “posterior is proportional
to likelihood times prior.”

Remarks on Taking the Log:

1. When we are maximizing the likelihood or the posterior, often, we apply log on both sides
of the equation so that we are then maximizing the log-likelihood or log-posterior.

2. Because log is a monotonically-increasing function, the value of θ that maximizes the log-
likelihood (or log-posterior) also maximizes the original likelihood (or posterior, if we’re
working with the posterior).

3. Practically, this is helpful because the log operation turns products into sums, which are
easier to take the derivative of (because the product rule is not the most pleasant thing to
do).

4. The log-likelihood function will often be denoted ℓ(θ|D)

2 Linear Classification

2.1 Takeaways

2.1.1 Classification

1. Goal : Given an input vector x, assign it to one of K discrete classes Ck.

2. Strategy: Divide our input space into disjoint (i.e., no overlap) decision regions whose
boundaries are called decision boundaries or decision surfaces.

3. Note: each decision region corresponds to being assigned to a certain class: there should be
K decision regions if we are working with K discrete classes.

2.1.2 Binary Linear Classification

• We are working with two classes divided by a linear separator in our feature space. We will
denote the two classes as −1 and 1 (note that in other situations, we might use 0 and 1).

• Note that linear in this sense is not limited to the 2D case. Formally, if each data point has D
dimensions, then the linear separator dividing our two classes (also called a “hyperplane”)
has D − 1 dimensions. For example, if each data point has 3 dimensions, then the linear
separator / hyperplane is a 2D plane.

• Discriminant function : Function that directly assigns each vector to a specific class

ŷ = sign(h(x;w, w0)) = sign(w⊤x+ w0)

*note: sign(z) = 1 if z ≥ 0, and sign(z) = −1 if z < 0.

• w is orthogonal to every point on the decision surface. It determines the orientation of the
decision boundary.

2.1.3 Perceptron

• Perceptron is a discriminative algorithm for binary classification that finds a linear decision
boundary surface, if one exists.

• To define the loss, we use the hinge loss / rectified linear function, also called ReLU :

ReLU(z) = max{0, z}

• We define the Perceptron loss function as follows, with h(xi;w, w0) = w⊤xi + w0:

L(w) =
n∑

i=1

ReLU(−h(xi;w, w0)yi)

= −
n∑

i=1:yi ̸=ŷi

(w⊤xi + w0)yi

• We can find our optimal weights by updating using (stochastic) gradient descent. Below
is the equation for updating the weights w at time t using the ith data point. Note that
Perceptron updates its weights one data point at a time.

w(t+1) = w(t) − η
∂

∂w
L(i)(w) = w(t) + ηyixi,

2.2 Concept Question

Why do we choose the ReLU function over the 0/1 function when formulating the loss func-
tion?

Solution:

The gradient for the 0/1 function is uninformative. We are either right or wrong.
0/1 is not differentiable at 0 and its derivative is 0 at all other points.

2.3 Exercise: Small Perceptron Example

Let’s train a perceptron on a small data set. Consider data {xi}Ni=1,xi ∈ R2. Let the learning rate
η = 0.2 and let the weights be initialized as:

w =

(
w1

w2

)
=

(
1

0.5

)
, w0 = 0

Let the circles have yi = 1 and the triangles yi = −1. The data and initial separation boundary
(determined by w) is illustrated below.

Proceed by iterating over each example until there are no more classification errors. When in
doubt, refer to the notes above. We know a priori that we will be able to train the classifier and
have no classification errors because one can see visually that the data is linearly separable (note:
as mentioned above, if the data were not so obviously linearly separable, a new basis could make
it so). How many updates do you have to make? Is this surprising?

Solution:

1. Consider x1 : w⊤x1 + w0 = 1 · 1 + 0.5 · 1 + 0 > 0. This is a correct classification, so we take
no action.

2. Consider x2 : w⊤x2 +w0 = 1 · 2+ 0.5 · (−2)+ 0 > 0. This is an incorrect classification, so we
need to update our weight parameters:

w← w + (0.2)(−1)
(

2

−2

)
=

(
0.6

0.9

)
w0 ← w0 + 0.2(−1) = −0.2

3. Consider x3 : w⊤x3+w0 = 0.6·(−1)+0.9·(−1.5)+(−0.2) < 0. This is a correct classification.

4. Consider x4 : Check that this is a correct classification.

5. Consider x5 : Check that this is an incorrect classification and our weight parameters are
updated to:

w←
(
0.2

1.1

)
w0 ← 0

6. Consider x6 : Check that this is again an incorrect classification:

w←
(
0.5

1

)
w0 ← 0.2

All data points are correctly classified now. If the data is linearly separable, we are guaranteed to
converge to a solution using the perceptron algorithm in a finite number of steps.

3 Probabilistic Classification

3.1 Takeaways

3.1.1 Probabilistic Discriminative Model

1. In general, our goal with probabilistic discriminative modeling is to model p(y|x).

2. Intuitively, and importantly, this means that we do not care about how x is generated – we
just care about the following: given x, what is the distribution of y?

A specific type of probabilistic discriminative modeling in the binary case is logistic regression.

3.1.2 Logistic Regression

1. In binary logistic regression, we only have two classes, which we will denote as 0 and 1. Note
that we are not using −1 and 1 anymore!

2. We will model our probability distribution for the label of a certain data point y, given its
features x, as follows, for some weights w and intercept w0:

p(y = 1|x) = σ(wTx+ w0)

p(y = 0|x) = 1− σ(wTx+ w0)

*In some texts, we might just see wTx instead of wTx + w0, because of the bias trick. They
mean the same thing.

3. The σ denotes the sigmoid function, which is defined as:

σ(z) =
1

1 + exp(−z)

The sigmoid function is important because it takes any value z on the real line (i.e., R) and
returns an output on (0, 1). This is very important because probabilities must be between 0
and 1. For clarity, exp(−z) = e−z .

4. To find the best weights w, we need to set up a loss function. We will use what is called the
negative log-likelihood loss function.

(a) Intuitively, we want to find w that maximizes the likelihood of our data.

(b) However, unlike ordinary least squares linear regression from last week, there is no
clean-cut analytical solution. Thus, we have to use gradient descent.

(c) The problem is – gradient descent is used to minimize a function. Well, minimizing
the negative likelihood (i.e., likelihood × -1) is the same thing as maximizing the like-
lihood. Furthermore, we know that minimizing the log-likelihood is the same thing as
minimizing the likelihood, but more mathematically tractable.

(d) By definition, a “loss function” is something that we want to minimize when trying
to find our optimal weights w. Thus, we use the negative log-likelihood as our loss
function.

(e) In practice, we will use an iterative method like (stochastic) gradient descent to mini-
mize our negative log-likelihood loss and obtain our optimal weights w.

(f) With a training data set of N points of the form (xi, yi), our negative log-likelihood loss
(which, fun fact, is also sometimes called the “cross-entropy loss”) is defined as follows:

L(θ) = −
N∑

n=1

(yn ln p(yn = 1|xn; θ) + (1− yn) ln p(yn = 0|xn; θ))

(g) After fitting our model, if we want to predict the class y∗ for a new data point x∗, we
will calculate the following class probabilities, and assign this new data point to which
ever class has the higher probability.

p(y∗ = 1|x∗;w)

p(y∗ = 0|x∗;w) = 1− p(y∗ = 1|x∗;w)

(h) Because of the wTx, logistic regression has linear decision boundaries! Yes, the sigmoid
function isn’t a straight line/hyperplane, but the wTx ensures that we have a linear
decision boundary!

(i) Remarks on Notation:

i. In some texts, you may see a ŷi term. Don’t be scared! In the context of logistic
regression,

ŷi = p(yi = 1|xi) = σ(wTx+ w0), or with the bias trick, just σ(wTx).

ii. Instead of yi = 1, in some course materials, you might sometimes see yi = C1. They
mean literally the same thing. Analogously, C2 corresponds to class 0.

iii. In the expression for the negative log-likelihood loss above, θ refers to the param-
eters of our model. In the context of logistic regression, θ and w (with maybe w0)
mean the same thing.

iv. L refers to the loss function, while L refers to the likelihood, and ℓ refers to the
log-likelihood. Be sure to check the context in which these symbols are used!

(j) We can also extend logistic regression to the multi-class case using the softmax function.
See pg. 42 in Undergraduate Fundamentals of Machine Learning for a deeper treatment of
this extension.

3.1.3 Generative Model

While a discriminative model works with the conditional distribution of p(y|x), a generative model
models the entire joint distribution of p(x, y). By Bayes’ Rule, we know that

p(x, y) ∝ p(x|y)p(y)

• p(y) is called the class prior and is almost always a categorical distribution, and is usu-
ally just a Bernoulli distribution in the case of binary classification (classes 0 and 1, in this
context).

• A categorical distribution (Cat) is a generalization of the Bernoulli distribution.

1. If X is a categorical random variable, we write X ∼ Cat(x,π) with parameters x =
[x1, . . . , xk] and π = [π1, . . . , πk].

2. x is a vector of all the possible values that X can take on.

3. π stores the probabilities of X taking on a particular value.

4. Of course, all the elements in π must sum up to 1 and be nonnegative, because X must
take on one of these values and probabilities are always nonnegative.

5. Mathematically, we write:
P (X = xi) = πi

• The class prior (often also known as the “prior distribution of y”) p(y) gives an a priori
probability of an observation being a certain class. Intuitively, this is our initial belief of the
distribution of y before we observe any data.

• p(x|y) is called the class-conditional distribution and its form is model-specific. Intuitively,
this tells us given y (our class assignment), how likely we are to see the corresponding x
features.

• We are interested in picking the class k that maximizes p(y = k|x). Again, the following
equation (Bayes’ Rule) might be helpful:

p(y|x) = p(x|y)p(y)
p(x)

∝ p(x|y)p(y)

*note: depending on the model, x can be either discrete or continuous. However, y must be
discrete, by definition of “classes.”

3.1.4 Naive Bayes

Naive Bayes is one type of generative model for classification. It’s “naive” because we assume
that each dimension d ∈ {1, ..., D} of the nth observed data point xn is conditionally independent
from the other dimensions given the correct class label i.e. yn = Ck.

p(xn|yn = Ck) =

D∏
d=1

p(xnd|yn = Ck)

*note: xnd refers to the dth entry of the nth data point xn. In Naive Bayes, we assume that each of
xn1, . . . , xnD has some conditional distribution given yn. Each of these element-wise conditional
distributions is independent of each other, by definition of Naive Bayes.

For sake of brevity, please see pg. 47 in Undergraduate Fundamentals of Machine Learning for a
deeper treatment of Naive Bayes, and a toy example.

3.1.5 Naive Bayes Concept Questions

How many parameters does this model have? Why do we use the “naive” assumption?

Solution:

The model has K×D×(J−1) parameters. The J−1 arises because each Categorical distributions’
J parameters must sum to 1, removing one degree of freedom. We use the “naive” assumption
in order to keep the number of parameters small. Naive bayes requires a number of parameters
linear in the number of variables (classes, features).

3.1.6 BONUS: Naive Bayes Practice Problem

Let’s consider just two classes. Let p(y = 1) = θ and p(y = 0) = 1 − θ. For a given dataset
{xn, yn}Nn=1, what are the maximum likelihood estimates of the the parameters θ, {πk,d,j}? We do
not provide any further description of the distributions – please work with a generic distribution
joint distribution p(x, y) (given the parameters).

Solution:

For MLE, we want to find the parameters that minimize the negated log-likelihood:

L(θ, {πk,d,j}) = − ln p({xn, yn}Nn=1|θ, {πk,d,j}) (1)

= − ln
N∏

n=1

p(xn, yn|θ, {πk,d,j}) (2)

= − ln
∏

n:yn=1

p(xn|{π1,d,j})p(yn = 1|θ)
N∏

n:yn=0

p(xn|{π0,d,j})p(yn = 0|θ) (3)

= −
∑

n:yn=1

ln p(xn|{π1,d,j})−
∑

n:yn=1

ln p(yn = 1|θ) (4)

−
∑

n:yn=0

ln p(xn|{π0,d,j})−
∑

n:yn=0

ln p(yn = 0|θ) (5)

= −
∑

n:yn=1

ln

D∏
d=1

J∏
j=1

π
I[xnd=j]
1dj −

∑
n:yn=1

ln(θ) (6)

−
∑

n:yn=0

ln
D∏

d=1

J∏
j=1

π
I[xnd=j]
0dj −

∑
n:yn=0

ln(1− θ) (7)

= −
∑

n:yn=1

D∑
d=1

J∑
j=1

I[xnd = j] ln(π1dj)−
∑

n:yn=1

ln(θ) (8)

−
∑

n:yn=0

D∑
d=1

J∑
j=1

I[xnd = j] ln(π0dj)−
∑

n:yn=0

ln(1− θ) (9)

The indicator function I[·] is useful to make sure that our likelihood only evaluates p(x, y) for each
x’s true class rather than both classes. This is used a lot, so make sure you see what is going on.

4 Additional Exercises

4.1 Exercise: Shapes of Decision Boundaries I

Consider now a generative model with K > 2 classes, and output label y encoded as a “one hot”
vector of length K. We adopt class prior p(y = Ck;π) = πk for all k ∈ {1, . . . ,K} (where πk is a
parameter of the prior). Let p(x |y = Ck) denote the class-conditional density of features x (in this
case for class Ck). Let the class-conditional probabilities be Gaussian distributions

p(x |y = Ck) = N (x |µk,Σk), for k ∈ {1, . . . ,K}

We will predict the class of a new example x as the class with the highest conditional probability,
p(y = Ck |x). Luckily, a little bird came to the window of your dorm, and claimed that you can
classify an example x by finding the class that maximizes the following function:

fk(x) = log(πk)−
1

2
log(|Σk|)−

1

2
(x− µk)

TΣ−1
k (x− µk).

Derive this formula by comparing two different classes’ conditional probabilities. What can we
claim about the shape of the decision boundary given this formula?

Solution:

Let’s start with the conditional probability:

p(y = Ck |x) =
p(x |y = Ck)p(y = Ck)∑c
ℓ p(x |y = Cℓ)p(y = Cℓ)

{We can take out the denominator since it will be the same for each class}

∝ p(x |y = Ck)p(y = Ck)

=
1

(2π)
m
2 |Σk|

1
2

exp (−1

2
(x− µk)

TΣ−1
k (x− µk))πk

{We can factor out constants that will be shared across classes}

∝ πk

|Σk|
1
2

exp (−1

2
(x− µk)

TΣ−1
k (x− µk))

{We take the logarithm, which is a monotonically increasing function and won’t change the max-
imum across classes}

∝ ln(πk)−
1

2
ln(|Σk|)−

1

2
(x− µk)

TΣ−1
k (x− µk)

Now, what can we say about the shape of our decision boundary? (x−µk)
TΣ−1

k (x−µk) gives us
intuition about the shape of our decision boundary. We see it is quadratic. For further intuition, we
can look at the other two terms to see what affects the probability of an example being classified
to a given class. As the prior πk increases, we see that the probability increases, which fits our
intuition. As the covariance matrix Σk increases, we see that the probability decreases, which also
fits our intuition.

4.2 Exercise: Shapes of Decision Boundaries II

Let’s say the little bird comes back and now tells you that every class has the same covariance
matrix, and so Σℓ = Σ′

ℓ for all classes Cℓ and Cℓ′ . Simplify this formula down further. What can
we claim about the shape of the decision boundaries now?

Solution:

Here was our original formula.

ln(πk)−
1

2
ln(|Σk|)−

1

2
(x− µk)

TΣ−1
k (x− µk) (10)

Given that all of the classes have the same covariance matrix, which we will write as Σ, we
have:

fk(x) = ln(πk)−
1

2
ln(|Σ|)− 1

2
(x− µk)

TΣ−1(x− µk)

= ln(πk)−
1

2
ln(|Σ|)− 1

2
(x− µk)

T (Σ−1x−Σ−1µk)

= ln(πk)−
1

2
ln(|Σ|)− 1

2
(xTΣ−1x− xTΣ−1µk − µTΣ−1x+ µTΣ−1µk)

= ln(πk)−
1

2
ln(|Σ|)− 1

2
(xΣ−1xT − 2xTΣ−1µk + µT

kΣ
−1µk)

= ln(πk)−
1

2
ln(|Σ|)− 1

2
xΣ−1xT + xTΣ−1µk −

1

2
µT
kΣ

−1µk

{We can drop −1
2 ln(|Σ|) and −1

2xΣ
−1xT since they are class independent}

∝ ln(πk) + xTΣ−1µk −
1

2
µT
kΣ

−1µk

Thus, we conclude that we can adopt function

f̃k(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + ln(πk) (11)

Looking at this formula, we can see that our decision boundaries are no longer quadratic but
linear. We’ve proven that if the classes share the same covariance matrix, our decision boundaries
will be linear!

4.3 OPTIONAL: Visualizing Decision Boundaries (This Looks Cool, But Not Required)

If you want to better understand what these decision boundaries look like, we can visualize them!
Let’s consider two classes and assume x lives in 2 dimensions. We first consider the case in which
the two classes have identical covariances, here defined as

p(x|y = 1) = N
(
µ1 =

[
1
1

]
,Σ1 =

[
2 0
0 1

])
p(x|y = 2) = N

(
µ2 =

[
−1
−1

]
,Σ2 =

[
2 0
0 1

])
We use the following code to plot the contours of both Gaussians:

i m p o r t s
import m a t p l o t l i b . pyplot as p l t
import numpy as np
import p l o t l y . g r a p h o b j e c t s as go
import sc ipy . s t a t s

c r e a t e meshgr id from −8 t o 8
mesh granular i ty = 100
p o s s i b l e v a l s = np . l i n s p a c e (− 8 . , 8 , mesh granular i ty)
mesh coords = np . meshgrid (p o s s i b l e v a l s , p o s s i b l e v a l s)
mesh coords = np . reshape (np . s tack (mesh coords) ,

newshape =(2 , mesh granular i ty * mesh granular i ty)) . T

d e f i n e means o f Gauss i ans
means = [np . array ([1 . , 1 .]) ,

np . array ([− 1 . , − 1 .])]

compute d e n s i t i e s f o r b o t h Gauss i ans assuming e q u a l c o v a r i a n c e s
covs = [np . array ([[2 . , 0 .] ,

[0 . , 1 .]]) ,
np . array ([[2 . , 0 .] ,

[0 . , 1 .]])]
same cov dens i t i es = [sc ipy . s t a t s . mul t ivar ia te normal . pdf (x=mesh coords ,

mean=mean ,
cov=cov)

for mean , cov in zip (means , covs)]

p l o t
p l t . contour (np . reshape (mesh coords [: , 0] ,

newshape=(mesh granulari ty , mesh granular i ty)) ,
np . reshape (mesh coords [: , 1] ,

newshape=(mesh granulari ty , mesh granular i ty)) ,
np . reshape (same cov dens i t i es [0] ,

newshape=(mesh granulari ty , mesh granular i ty)) ,
c o l o r s = ’ red ’)

p l t . contour (np . reshape (mesh coords [: , 0] ,
newshape=(mesh granulari ty , mesh granular i ty)) ,

np . reshape (mesh coords [: , 1] ,
newshape=(mesh granulari ty , mesh granular i ty)) ,

np . reshape (same cov dens i t i es [1] ,
newshape=(mesh granulari ty , mesh granular i ty)) ,

c o l o r s = ’ blue ’)

p l t . x l a b e l (’ x 1 ’)
p l t . y l a b e l (’ x 2 ’)
p l t . t i t l e (’ Density Contours f o r 2 Gaussians , Same Covariance ’)
p l t . a x i s (’ equal ’)
p l t . xlim (−4 , 4)
p l t . ylim (−4 , 4)
p l t . show ()

This gives us the following contours:

If you would prefer plotting in 3D, we can alternatively use Plotly:

f i g = go . Figure (data =[
go . Mesh3d (x=mesh coords [: , 0] ,

y=mesh coords [: , 1] ,
z=same cov dens i t i es [0] ,
c o l o r = ’ l i g h t p i n k ’) ,

go . Mesh3d (x=mesh coords [: , 0] ,
y=mesh coords [: , 1] ,
z=same cov dens i t i es [1] ,
c o l o r = ’ l i g h t b l u e ’)])

f i g . show ()

Rotating the plot (and ignoring peripheral floating point problems), we can see that the two Gaus-
sians have equal density along a line:

We now plot the second case, with unequal covariances. We assume the two Gaussians are:

p(x|y = 1) = N
(
µ1 =

[
1
1

]
,Σ1 =

[
2 0
0 2

])
p(x|y = 2) = N

(
µ2 =

[
−1
−1

]
,Σ2 =

[
2 0
0 1

])
d e f i n e means o f Gauss i ans
means = [np . array ([1 . , 1 .]) ,

np . array ([− 1 . , − 1 .])]

compute d e n s i t i e s f o r b o t h Gauss i ans assuming e q u a l c o v a r i a n c e s
covs = [2 . * np . eye (2) , np . array ([[2 . , 0 .] , [0 . , 1 .]])]
d i f f c o v d e n s i t i e s = [sc ipy . s t a t s . mul t ivar ia te normal . pdf (x=mesh coords ,

mean=mean ,
cov=cov)

for mean , cov in zip (means , covs)]

The contour plot outputs as follows:

Rotating the plot (and ignoring the floating point problems on the periphery), we can see that the
two Gaussians have equal density along a parabola:

f i g = go . Figure (data =[
go . Mesh3d (x=mesh coords [: , 0] , y=mesh coords [: , 1] , z= d i f f c o v d e n s i t i e s [0] ,

c o l o r = ’ l i g h t p i n k ’) ,
go . Mesh3d (x=mesh coords [: , 0] , y=mesh coords [: , 1] , z= d i f f c o v d e n s i t i e s [1] ,

c o l o r = ’ l i g h t b l u e ’)])
f i g . show ()

	Probabilistic Regression (Review)
	Linear Classification
	Takeaways
	Classification
	Binary Linear Classification
	Perceptron

	Concept Question
	Exercise: Small Perceptron Example

	Probabilistic Classification
	Takeaways
	Probabilistic Discriminative Model
	Logistic Regression
	Generative Model
	Naive Bayes
	Naive Bayes Concept Questions
	BONUS: Naive Bayes Practice Problem

	Additional Exercises
	Exercise: Shapes of Decision Boundaries I
	Exercise: Shapes of Decision Boundaries II
	OPTIONAL: Visualizing Decision Boundaries (This Looks Cool, But Not Required)

