
CS 181 Spring 2022 Section 1 Notes:
Nonparametric Regression, Linear Regression, MLE

1 Types of Learning

1.1 Takeaways

1. Supervised - we are given the labels y during training. There are two main types.

(a) Regression - labels y are continuous real numbers (usually, e.g. predict future stock
price in dollars).

(b) Classification - labels y are discrete and categorical (e.g. is this a picture of a pig, panda,
or parakeet?).

2. Unsupervised - we are not given the labels y during training, and are only provided with the
input data x. Why would we even do unsupervised learning at all then? Well, generally, we
use unsupervised learning to find out more about the construction of our data, relationships
between our data, and “important” features of our data. Some examples of unsupervised
learning include:

(a) Clustering - finding natural groupings of our data.

(b) PCA - projecting high dimensional data into lower dimensions (we’ll discuss why this
is important in the future).

3. Reinforcement Learning (RL) - we’ll save this one for later! In summary, RL can be broken
down into (states, actions, rewards). Many strategy game bots (any StarCraft folks?) are
designed using RL.

2 KNN and Kernelized Regression

2.1 K-Nearest Neighbors (KNN)

1. KNN is considered a form of non-parametric regression. Intuitively, for a fixed value of
K=k, there are no parameters that we have to tune (i.e., no weights that we have to learn).
More rigorously, non-parametric means that we do not make any assumptions about the
parameters / characteristics of our data (in context, this means that we do not assume an
underlying probability distribution).

2. Rundown of the KNN Algorithm:

(a) Let x∗ be the point that we would like to make a prediction about. Let’s find the k
nearest points {x1, . . .xk} to x∗, based on some predetermined distance function.

(b) Denote the true y values of these k points as {y1, . . . yk}.



(c) Output our prediction ŷ∗ for our point of interest x∗:

ŷ∗ =

k∑
i=1

yk

k

Remark: the little “hat” in ŷ∗ is just notation telling us that this is our prediction, rather
than the true y value.

2.2 Kernelized Regression

Note: You might come across this concept under the name kernel-weighted average regression.

1. Kernelized Regression is considered to be a smoother, more general extension of KNN.

2. Let k(x∗,xn) be our “kernel function.” In Kernelized Regression, we want to take a weighted
average of all the points in our training data when outputting our prediction for an unknown
point. Intuitively, we want to weigh points that are “closer” to our unknown point of inter-
est more heavily than points that are “farther” away. As such, our kernel function k(x∗,xn)
should be larger for a point xn closer to our point of interest x∗ than a point xn farther away.

3. Importantly, the following should always hold:

argmax
x

k(x∗,x) = x∗

Remark: What the above statement means is that “the value of x that results in the largest
value of k(x∗,x) should be x∗ itself”.

4. Rundown of the Kernelized Algorithm:

(a) Let {x1, . . .xN} (and their corresponding y values) be all of the N points comprising
our training data set.

(b) Let x∗ be our point of interest that we want to make a prediction for. We make our
prediction as follows:

ŷ∗ =

N∑
i=1

k(x∗,xi) · yi

N∑
j=1

k(x∗,xj)

Remark: notice how we include all points of the training data in our calculation?
Remark: we have to include the denominator term in order to normalize the sum of our
weights to equal 1.



3 Least Squares (Linear) Regression

3.1 Takeaways

3.1.1 Linear Regression

The simplest model for regression involves a linear combination of the input variables:

h(x;w) = w1x1 + w2x2 + . . .+ wDxD =
D∑

d=1

wdxd = w⊤x (1)

where xj ∈ R for j ∈ {1, . . . , D} are the features, w ∈ RD is the weight parameter, with w1 ∈ R
being the bias parameter. Recall the trick of letting x1 = 1 to merge bias.

3.1.2 Least Squares Loss Function

The least squares loss function assuming a basic linear model is given as follows:

L(w) =
1

2

N∑
n=1

(
yn −w⊤xn

)2
(2)

For regularized regression, such as LASSO (L1) or Ridge (L2) regression, we use a different loss
function with an added penalty term. The L1 penalty is λ∥w∥1, and the L2 penalty is λ∥w∥22.

A few remarks on notation:

1. Let w = {w1, w2, . . . , wD}

2. LASSO (L1) Regularization (written out):

λ|w| = λ

( D∑
i=1

|wi|
)

Note: |w|means the same thing as ∥w∥1, depending on textbook/region.

3. Ridge (L2) Regularization (written out):

λ∥w∥22 = λ ·
(√

w2
1 + · · ·+ w2

D

)2

= λ ˙(w2
1 + · · ·+ w2

D

)
Remark: ∥w∥ means the “norm” of w. Usually, this means the L2 norm. In most contexts, ∥w∥
means the same thing as ∥w∥2.

Remark: occasionally, you may see a λ
2 instead of λ. Conceptually, these two conventions are very

similar. The dividing by 2 just helps us make things a little bit nicer when we take the derivative.



3.1.3 Optimizing Weights to Minimize Loss Function

In class, we briefly discussed how to find the weights that minimize the least squares loss func-
tion. Let us derive the end result from scratch again, in more detail. This will be a good exercise
for future problem sets and topics.

Some important notes on notation and dimensions:

1. In this class, if y ∈ R and x ∈ Rn, then

dy

dx
=


∂y
∂x1
∂y
∂x2

...
∂y
∂xn


Note that this derivative is a column vector!

2. If y ∈ Rm and x ∈ Rn, then

dy

dx
=


∂y1
∂x1

∂y2
∂x1

· · · ∂ym
∂x1

∂y1
∂x2

∂y2
∂x2

· · · ∂ym
∂x2

...
...

. . .
...

∂y1
∂xn

∂y2
∂xn

· · · ∂ym
∂xn


Note that this derivative is basically like stacking the dyi

dx column vectors together like “books
on a bookshelf!”

3. By convention, we will treat our vector of y-values, y, as a column vector. We will also treat
our weight vector, w, as a column vector. Finally, we will treat each individual data point xi

as a column vector.

4. However, we will treat our data matrix X (of all the individual data points xi combined
together), which is also called a “design matrix,” as follows. This is not a typo:

X =


← x1

T →
← x2

T →
...

← xn
T →

 =


x11 · · · x1D
x21 · · · x2D

...
. . .

...
xn1 · · · xnD

 .

D is the number of dimensions in our data (i.e., the dimensions of each data point xi).

Now, let us find the weights that minimize the least squares loss function.

1. We begin with our loss function:

L(w) =
1

2

N∑
n=1

(
yn −w⊤xn

)2



2. A few remarks on this loss function:

(a) ŷn = w⊤xn is our predicted y value for each xn, under linear regression. Thus, our loss
function could also be written as the following for intuition:

L(w) =
1

2

N∑
n=1

(yn − ŷn)
2

(b) The presence of the 1
2 is just to make things neater when we take the derivative.

(c) The loss function itself outputs a scalar value! The total loss is always a scalar real value,
and not vector!

3. To find w that minimizes our loss function, we take the derivative of the loss function (again,
a scalar) with respect to w and set the derivative equal to 0. By the power, sum (across the
summation), and chain rules, we have the following:

dL
dw

=
N∑

n=1

(
(yn −w⊤xn) ·

d(yn −w⊤xn)

dw

)
= 0

4. Let’s look at that inner derivative a bit more closely. This is a good example of how to think
through a matrix derivative. By rules from single variable calculus, we have:

d(yn −w⊤xn)

dw
=

d(−w⊤xn)

dw
= −d(w⊤xn)

dw

Note that w⊤xn is a scalar function, while w is a vector. Thus, our resultant derivative
should be a column vector. We rewrite the following for intuition:

w⊤xn = w1xn1 + w2xn2 + · · ·+ wDxnD

For any arbitrary element of w, which we’ll call wi, we have, via single variable calculus:

d(w⊤xn)

dwi
= xni

From our notational conventions previously combined with our observation directly above,

d(w⊤xn)

dw
=


∂(w⊤xn)

∂w1
∂(w⊤xn)

∂w2
...

∂(w⊤xn)
∂wD

 =


xn1
xn2

...
xnD

 = xn

5. Now, going back to our derivative of the loss function with respect to w, we have:

dL
dw

=

N∑
n=1

(
(yn −w⊤xn) ·

d(yn −w⊤xn)

dw

)
=

N∑
n=1

(
(yn −w⊤xn) · −

d(w⊤xn)

dw

)
= 0



dL
dw

=

N∑
n=1

(
(yn −w⊤xn) · −xn

)
=

N∑
n=1

(
− ynxn + (w⊤xn)xn

)
= 0

Equivalent, we can move the negative terms to the right hand side (RHS):

N∑
n=1

(w⊤xn)xn =

N∑
n=1

ynxn

6. Note that w⊤xn is a scalar, and that w⊤xn = xT
nw. This is important because we can left-

multiply or right-multiply by scalars however we want:

N∑
n=1

(w⊤xn)xn =
N∑

n=1

(xT
nw)xn =

N∑
n=1

xn(x
T
nw) =

N∑
n=1

ynxn

7. One key observation is that w does not depend on the value of our index variable n in the
summation! Thus, we can take it out of our summation:

N∑
n=1

xn(x
T
nw) =

( N∑
n=1

xnx
T
n

)
w

8. Remember our “design matrix” X from earlier? Also, recall that y is a column vector! If we
draw out X, XT , and y, we will soon notice that

XTy =
N∑

n=1

ynxn =
N∑

n=1

xnyn

9. If we draw out X and XT , we will realize that

N∑
n=1

xnx
T
n = XTX

And of course, ( N∑
n=1

xnx
T
n

)
w =

(
XTX

)
w

10. Putting our LHS and RHS together, we have:( N∑
n=1

xnx
T
n

)
w =

N∑
n=1

xnyn ⇔
(
XTX

)
w = XTy

11. Taking the liberty to assume that XTX is invertible, we can isolate w:

w∗ =

(
XTX

)−1

XTy

The little ∗ in w∗ just means that these are the optimal weights, as opposed to any generic set
of weights.



In short, if we minimize our least squares loss function with respect to the weights, we get the
following solution:

w∗ = (X⊤X)−1X⊤y = argmin
w

L(w) (3)

where X ∈ RN×D. Each row represents one data point and each column represents values of one
feature across all the data points. In practice, gradient descent is often used to compute w∗. Today,
we just got super lucky that there was a clean-cut closed-form analytical solution. 1

3.2 Concept Question

How is a model (such as linear regression) related to a loss function (such as least squares)?

• The model (of the data) and the loss functions are both important pieces to the ML pipeline,
but they are distinct. The model describes how you believe the data is related and/or gen-
erated. Very commonly, you will be optimizing over a family of models. The loss function
measures how well a specific model (i.e. with specific parameters) fits the data, and it is used
in the previously mentioned optimization.

• Least squares and linear regression are often used together, especially since there are theo-
retical justifications (i.e. MLE connection) to why least squares is a good loss function for
linear regression. However, you do not have to use them together. Another loss function
that could be used with linear regression is an absolute difference (L1) loss.

1Note: (XTX)−1 is invertible iff X is full column rank (i.e. rank D, which implies N ≥ D). What if (XTX)−1 is not
invertible? Then, there is not a unique solution for w∗. If d > N , computing the pseudoinverse of XTX will find one
solution. Alternatively, in general applying ridge regression can fix the invertibility issue.



3.3 Exercise: Practice Minimizing Least Squares

Let X ∈ RN×D−1 be our design matrix, y our vector of N target values, w our vector of D − 1
parameters, and w0 our bias parameter. The least squares error function of w and w0 can be
written as follows

L(w, w0) =
1

2

N∑
n=1

(
yn − w0 −

D−1∑
d=1

wdXnd

)2

.

Find the value of w0 that minimizes L. Can you write it in both vector notation and summation
notation? Does the result make sense intuitively?

Solution: We minimize by finding gradient w.r.t w0, setting to 0, and solving.

∂L

∂w0
= −

N∑
n=1

(yn − w0 −
D−1∑
d=1

wdXnd) = 0

Nw∗
0 =

N∑
n=1

(
yn −

D−1∑
d=1

wdXnd

)

w∗
0 =

1

N

[(
N∑

n=1

yn

)
−

N∑
n=1

D−1∑
d=1

wdXnd

]

=
1

N

(
y⊤1−

N∑
n=1

w⊤xn

)

The result makes sense intuitively as it is the average deviation of the outputs from the predictions.



4 Linear Basis Function Regression

4.1 Takeaways

We allow h(x;w) to be a non-linear function of the input vector x ∈ RD, while remaining linear in
w ∈ RM by using a basis function ϕ : RD → RM . The resulting basis regression model is below:

h(x;w) =

M∑
m=1

wmϕm(x) = w⊤ϕ(x) (4)

To merge the bias term, we can define ϕ1(x) = 1. Some examples of basis functions include
polynomial ϕm(x) = xm, Fourier ϕm(x) = cos(mπx), and Gaussian ϕm(x) = exp{− (x−µm)2

2s2
}.

4.2 Concept Questions

• What are some advantages and disadvantages to using linear basis function regression to
basic linear regression?

• How do we choose the bases?

Basis functions allow us to capture nonlinear relations that may exist in the data, which linear
functions can not. There is, however, a greater risk of overfitting with the more flexible linear ba-
sis function regression - more on this in the upcoming weeks in lecture with bias-variance tradeoff.

We can choose the bases with expert domain knowledge, or they could even be learned them-
selves... (foreshadowing neural nets).

We don’t talk about feature engineering and incorporating expert domain knowledge too much
in this class; however, these are vital in real world situations for good performance. The practical
assignment and pset problems may touch on this.

5 Maximum Likelihood Estimation (Prep for Future + Pset)

5.1 Takeaways

• Given a model and observed data, the maximum likelihood estimate (of the parameters) is
the estimate that maximizes the probability DENSITY of seeing the observed data under the
model.

• It is obtained by maximizing the likelihood function, which is the same as the joint pdf of
the data, but viewed as a function of the parameters rather than the data.

• Since log is monotonic function, we will often maximize the log likelihood rather than the
likelihood as it is easier (turns products from independent data into sums) and results in the
same solution.



5.2 Exercise: MLE for Gaussian Data

We are given a data set (x1, . . . ,xn) where each observation is drawn independently from a mul-
tivariate Gaussian distribution:

N (x|µ,Σ) =
1

|(2π)Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
(5)

where µ is a m-dimensional mean vector, Σ is a m by m covariance matrix, and |Σ| denotes the
determinant of Σ. Find the maximum likelihood value of the mean, µMLE .

Solution: We find the MLE by maximizing the log likelihood:

l(µ,Σ;x) = log

(
n∏

i=1

N (xi|µ,Σ)

)
=

n∑
i=1

log(N (xi|µ,Σ))

= −n

2
log(2π)− n

2
log(|Σ|)− 1

2

n∑
i=1

(xi − µ)⊤Σ−1(xi − µ)

Taking the derivative (matrix cookbook ch 2.4 eqn 78) with respect to µ and setting it equal to 0,
we get

0 =
∂l

∂µ
=

n∑
i=1

Σ−1(xi − µ)

and solving gives us that

µMLE =
1

n

n∑
i=1

xi.
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