
Practice Questions for CS 181, Midterm 2 (Spring 2022)

Finale Doshi-Velez

Harvard College

April 19, 2022

These practice questions are illustrative of the kinds of understanding that you should expect
to be tested on the midterm. If anything they are slightly more difficult than the questions on the
exam. You can expect around 5 questions on the midterm and you will have 75 minutes. This
means that a typical question should take 15 minutes. But some will be shorter, some longer and
say 10 mins vs 20 min questions. We’ve provide rough guidance here (“short”), (“typical”) and
(“long”).
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1. Hierarchical Agglomerative Clustering [Short]

Consider nine points x1, . . . , x9 shown below, where the y-axis provides their values. We define
d(x, x′) = |x− x′|, and consider two different cluster distances.

Draw the dendrogram for the data. Join together clusters one per step (on the horizontal-
axis), breaking ties towards joining lower x values first. In the top figure, use the min-linkage
distance and in the bottom figure use the max-linkage distance.

(a) Min Linkage:
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(b) Max Linkage:
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Solution:

(a) Min Linkage:
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(b) Max Linkage:
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2. Bayesian networks [Typical]

Consider the following Bayesian network, where the variables are all Boolean.

The ‘+’ annotations indicate the direction of the local effect; e.g., the ‘+’ from U to W means
that for each value v of V ,

p(W = true |U = true, V = v) > p(W = true |U = false, V = v).

For each of the following questions, select one of the following, and also state which (if any)
undirected paths are blocked (in the sense of d-separation):

= if the two probabilities are necessarily equal;

< if the first probability is necessarily smaller;

> if the first probability is necessarily larger;

? if none of these cases hold.

(a) p(V = true | Y = false) p(V = true | Y = true)

(b) p(V = true | Z = false) p(V = true | Z = true)

(c) p(U = true |W = true, Y = false) p(U = true |W = true, Y = true)

(d) p(Y = true | Z = true,X = false) p(Y = true | Z = true,X = true)

(e) p(U = true | Y = true, Z = false) p(U = true | Y = true, Z = true)
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Solution.

[We give more explanation here than you would expected to give!]

(a) p(V = true | Y = false) < p(V = true | Y = true)

First, let’s ask whether V⊥Y , i.e., are V and Y independent?

Path VWY is not blocked, path V XZY is blocked at Z (converging arrow). So, V is not
independent of Y .

Considering the unblocked path, since the V −W effect is positive and the W − Y effect
is positive, then we have Y being true makes V more likely to be true. Notice that this
positive correlation goes in both directions, e.g., if V is positively correlated with W , then
W is positively correlated with V . For this reason, we conclude “<”.

(b) p(V = true | Z = false) < p(V = true | Z = true)

First let’s ask whether V⊥Z? Neither paths V-W-Y-Z or V-X-Z are blocked, so these are
not independent.

Now, the effect on each of the paths is positive, for the same reason as the positive corre-
lation argument in in part (a). Since both effects go in the same direction we can answer
affirmatively with a “<” inequality.

(c) p(U = true |W = true, Y = false) = p(U = true |W = true, Y = true)

Now we have W in the evidence. The relevant independent question is U⊥Y |W = True,
i.e., are U and Y conditionally independent, given this evidence W?

There are two paths to check. Path U −W − Y is blocked at W , and path U −W − V −
X − Z − Y is blocked at Z (converging arrow, no evidence). Note the second path is no
longer blocked at W because there’s a converging arrow on this path. But it is any way
blocked, because Z is not in the evidence.

Since both paths are blocked, then U and Y are conditionally independent givenW = True,
and we have “=” as the answer.

(d) p(Y = true | Z = true,X = false) ? p(Y = true | Z = true,X = true)

Now Z in evidence. We’re interested in understanding Y⊥X |Z = True.

Path YWVX is not blocked. In addition, Y −Z −X is not blocked (converging arrows at
Z, and we know Z).

There are two paths for information to flow between Y and X. On the first path YWVX
this is a positive effect for the reasons as the positive correlation argument in part (a).
But on the second path Y ZX this is a negative effect because we have “explaining away”
through Z. That is, knowing X is true reduces the probability that Y is true since it
explains Z being true and means that it’s less likely we also have the other possible reason
of Y being true.

Because the effects go in different directions, the answer is “?”.

(e) p(U = true | Y = true, Z = false) > p(U = true | Y = true, Z = true)

Now Y is in the evidence.

We’re interested in understanding U⊥Z |Y . In this case path U −W − Y − Z is blocked
at Y . But path U −W − V −X − Z is not blocked (we have converging arrows at W and
a child of W is in the evidence, and so the path is not blocked at W ).
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We have a single unblocked path, and information can flow along U−W −V −X−Z. Now,
if Z is true then this makes V more likely to be true by the positive correlation argument
in (a), and note that Y being true makes W likely to be true. We now have an “explaining
away” pattern at W where having Y be more likely to be true, conditioned on W being
likely to be true, makes U less likely to be true.

Hence the “>” in the answer.
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3. Bayesian networks [Long]

Consider this example of a Bayesian network with binary variables. It models a garden lawn
and whether or not the grass is wet.

(a) Construct an alternative Bayesian network that models the same distribution for variable
ordering, S,C,R,W . That is, add S, then C with any required edge, then R with any
required edges, then W with any required edges. Don’t specify conditional proba-
bility tables. [Hint: Use the given Bayesian network to determine which conditional
Independence properties hold amongst preceding variables, and only include needed edges.]

(b) Is this new Bayesian network a correct model of the distribution? Which network do you
consider to be preferable, if any?

7



(c) Going back to the original network, what is the probability that it is not cloudy, rains,
sprinkler doesn’t run, and grass is wet?

(d) In the original network: write down the first two steps of variable elimination for p(W ),
eliminating C and then S. Perform the numerical calculations!
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Solution.

(a) Construct the Bayesian Network for ordering S,C,R,W . [Note: written in full here, but
you didn’t need to provide this detail]

• Variable S: just add the node

• Variable C: check the following

– can we add no in-edges? Is C ⊥ S? no!

Conclude that we need edge S → C.

• Variable R: check the following

– can we add no in-edges? Is R ⊥ C? no!

– can we add just one in-edge? Suppose we add C to R. Is R ⊥ S |C? yes! (in
original network: R-C-S blocked at C, R-W-S blocked at W.) Conclude can just
add C to R.

• Variable W : check the following

– can we add no in-edges? Is W ⊥ R? No!

– can we add just one in-edge?
what if we just had the R-W edge? Is W ⊥ C |R? no, path C−S−W not blocked
in original network.
what if we just had the C-W edge? Is R ⊥W |C? no!
what if we just had the S-W edge? Is R ⊥W |S? no!

– can we add just two in-edges? Consider edges S-W and R-W. Is C ⊥ W |S,R?
checking original network, yes! paths CRW and CSW are both blocked. Conclude
that it is sufficient to just add these two edges.

(b) Yes, it is correct.1

In this case, both have the same number of parameters (1+ 2+ 2+ 4 = 9), and thus one is
not preferred for reasons of compactness.2 But we might prefer the first network because
it is constructed in a causal order and is therefore more interpretable (the S → C edge in
the new network is hard to interpret!).

1Networks are correct for any ordering, but the ordering can affect compactness and interpretability.
2Compact networks are generally preferred because they have fewer parameters, need less data to learn, and are

less likely to overfit if data is noisy.
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(c)

p(C = false,R = true, S = false,W = true) = p(C = false)p(S = false |C = false)p(R |C = false)p(W |S = false,R)

= 0.5 · 0.5 · 0.2 · 0.9 = 0.045

(d)

p(W ) =
∑
c,s,r

p(C)p(S |C)p(R |C)p(W |S,R)

=
∑
s,r

p(W |S,R)
∑
c

p(C)p(S |C)p(R |C)

=
∑
s,r

p(W |S,R)ψ1(S,R)

=
∑
r

∑
s

p(W |S,R)ψ1(S,R)

=
∑
r

ψ2(W,R)

Calculations:
ψ1 C = false C = true

S R p(C) p(S |C) p(R |C) × p(C) p(S |C) p(R |C) ×
∑

T T 0.5 0.5 0.2 0.05 0.5 0.1 0.8 0.04 0.09
T F 0.5 0.5 0.8 0.2 0.5 0.1 0.2 0.01 0.21
F T 0.5 0.5 0.2 0.05 0.5 0.9 0.8 0.36 0.41
F F 0.5 0.5 0.8 0.2 0.5 0.9 0.2 0.09 0.29

ψ2 S = false S = true
W R p(W |S,R) ψ1(S,R) × p(W |S,R) ψ1(S,R) ×

∑
T T 0.9 0.41 0.369 0.99 0.09 0.0891 0.4581
T F 0.01 0.29 0.0029 0.9 0.21 0.189 0.1919
F T 0.1 0.41 0.041 0.01 0.09 0.0009 0.0419
F F 0.99 0.29 0.2871 0.1 0.21 0.021 0.3081
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4. Markov Decision Process (modeling). [Long] [Harder than an MDP modeling question
you’d expect on Spring 2021 midterm]

You are asked to develop a Markov Decision Process (MDP) to be used for the control of a single
elevator. To model:

• There are three floors

• There are three buttons inside the car

• There is a single call button outside on each floor

• The door of the elevator opens and closes.

The “agent” here is the elevator itself, and the aim of the system is to get passengers to their
appropriate floors.

(a) Describe in words the states, actions, reward function, and transition model for a suitable
MDP model. Make sure that the reward function is clear.

(b) Explain your model as you introduce it. From your explanation the reader should under-
stand the idea for why an optimal policy should lead to an efficient system.

NOTE: There is no single correct answer here.
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Solution.

There is no single correct answer to this problem, but your response should clearly
identify the sets of states and actions, the reward function, and reasonable transi-
tions.

States

A single state s ∈ S is represented in a factored way through s = (F,R,C), with

• (floor) F ∈ {1, 2, 3}
• (requests from inside car) R ⊆ {1, 2, 3}
• (call from outside elevator) C ⊆ {1, 2, 3}

Initial state: F = 1, R = ∅, C = ∅.
Note: we choose not to model whether the door is open or closed, where the elevator was in the
past, or how long someone has been waiting.

Actions

An action is one of

• open-close (modeled as a single action, for simplicity)

• up (available if F < 3)

• down (available if F > 1)

• nothing

The ‘nothing’ action is to stop the elevator continually doing something

Reward

r(s, open-close) =

{
1 if (F ∈ C) ∨ (F ∈ R)
−0.01 o.w.

r(s, up) = r(s, down) = −0.01

r(s, nothing) = 0

We include positive reward when the open-close action is taken and the elevator is at a floor
where it has been requested to go to or where it was called from. Other rewards are negative to
dissuade it from doing things without need.

Transition

Define random variables Xj ∼ [{j} : 0.5, ∅ : 0.5] that take on set value {j} w.p. 0.5, and
emptyset otherwise.

Define random variable Y (C,F ) that is ∅ if F /∈ C (was not called to this floor), or uniformly
sampled from {1, 2, 3} \ F otherwise (the floor the rider wants to go to.)

We can now define a transition model for next state s′ = (F ′, R′, C ′) reached after action a in
state s. We do this in factored way. First, in regard to floor:
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• if a = up: then F ′ = F + 1

• if a = down: then F ′ = F − 1

• if a = nothing or a = open-close then F ′ = F

Second, in regard to calls:

• if a ∈ {up, down, nothing} then C ′ := C ∪X1 ∪X2 ∪X3 because we assume that there’s a
50% probability of each floor being called from outside

• if a = open-close then C ′ := (C \ F ) ∪X1 ∪X2 ∪X3 because open-close will drop any call
button at that floor, but someone else can still call before the next period

Third, in regard to requests:

• if a ∈ {up, down, nothing} then R′ := R

• if a = open-close then R′ := (R \ F ) ∪ Y (C,F )

Note: this models that the effect of open-close is to drop any request that had been at that floor,
and add a request only if there had been a call at the floor, and only going to a different floor.
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5. Alternate Reward Function for MDPs [Short]

We have been assuming that the reward function for an MDP has the form r(s, a). Also recall
that we have written value iteration for infinite-horizon problems as:

V ′(s)← max
a

[
r(s, a) + γ

∑
s′

p(s′ | s, a)V (s′)

]
(1)

Now, imagine that we have a reward function that depends on both the current state and the
next state, i.e., r(s, a, s′).

(a) Explain why this kind of reward function can be useful from a modeling perspective

(b) Write an expression for the value iteration step that incorporates this alternative type of
reward.

(c) Explain formally why this approach is neither more general nor less general than an MDP
model that insists on just using r(s, a).
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Solution.

(a) This can be useful for modeling. For example, a room cleaning robot can have r(s, pick −
up, s′) = 1 if next state does not have a broken object and r(s, pick − up, s′) = −10 if next
state does have a broken object. Without this, we’d model r(s, pick − up) as the expected
reward for these two outcomes.

(b) The value iteration step becomes:

V ′(s)← max
a

[∑
s′

p(s′ | s, a)r(s, a, s′) + γ
∑
s′

p(s′ | s, a)V (s′)

]

(c) This approach can represent any r(s, a) reward because we can always define r(s, a, s′) =
r(s, a), for all values of s′. Any r(s, a, s′) function can be represented as an r(s, a) function
by defining r(s, a) =

∑
s′ p(s

′ | s, a)r(s, a, s′).
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6. Planning in MDPs [Typical]

Consider a gridworld with the layout below. From each square, the agent may move into an
adjoining square (up, down, left, right) or stay in place. If a policy specifies a move into a square
which does not exist (i.e. down from one of the squares in the bottom row), the agent stays
in place. Actions are deterministic, that is, they always have their intended effect. We use an
infinite horizon with discount γ = 1. [This keeps the math simple in this example]

The robot starts in the state marked with an S. Upon reaching the state marked G the agent
transitions into an absorbing state where it stays forever. The rewards associated with a
state are the reward for taking any action from that state.

Recall the policy improvement step in policy iteration (where V π is the value function of the
current policy):

π′(s)← argmax
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V π(s′)

]
, ∀s

(a) Suppose that we follow the policy given
by the arrows. What is the MDP value of
each state under this policy? [You can figure
this out by inspection of the policy and the
environment]

(b) Can this policy be improved? To check
this, (1) use policy improvement and draw
the adjusted policy and (2) compute the new
value function in each state.

(c) Is the new policy optimal? [Hint: you
should be able to argue yes/no directly, with-
out doing another round of policy iteration]
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Solution.

(a) See the following figure for the MDP value of each state under this policy. [Note: it is −∞
in states for which the policy does not escape to the goal state because γ = 1 and thus
there is no discount.]

(b) See the following figure for the updated policy and MDP value function based on one round
of policy iteration.

Here, we break ties by leaving the action unchanged if there is no better action relative to
the last round of policy iteration.

We see the new policy is better in a number of states.
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(c) The new policy is still not optimal; e.g, it moves right in the bottom-left state, whereas it
would be optimal to move up. [Similarly, it moves up in the state to the left of the missing
position, when it would be better to move down.]
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7. Reinforcement learning [Typical]

The update rule for SARSA reinforcement learning is:

Q(s, a)← Q(s, a) + α[(r + γQ(s′, a′))−Q(s, a)]. (2)

(a) What are the different quantities, how are they generated (e.g., which by the agent, which
from the environment), and what is the idea of the update?

(b) What is meant by ‘on-policy’ and ‘off-policy’ reinforcement learning, and is SARSA an
on-policy or off-policy method?

(c) What does it mean to exploit in the context of reinforcement learning?

(d) Consider this simple MDP world, where the reward is 100 for any action taken in state f
and 0 in all other states and actions are deterministic (thus ‘up’ always moves ‘up’).

Assume the Q-values are initialized to 0, and the agent is initially in state c. What are the
updates made by SARSA following each action (for α = 0.9 and γ = 0.9).

Assume that no update is possible until the values of s, a, r, s′, a′ are all well-defined.

i. up (to state f)

ii. left (to state e)

iii. right (to state f)

iv. down (to state c)
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Solution.

(a) s is current state, a is selected via an agent’s policy such as ϵ-greedy, reward is given by
the MDP for r(s, a), state s′ is given by the MDP for p(s′ | s, a), action a′ is given by the
agent’s policy.

The idea is to use a single step observation to adjust the Q value for the state-action (s, a)
closer to that which is consistent with the policy being followed by the agent. Eventually we
hope Bellman equations will hold the and the Q values correspond to those of the optimal
policy.

(b) On-policy: with enough observations, and a learning rate that becomes small in the limit,
the Q-values learned will correspond to those of the policy we follow while learning (i.e.,
the one that we converge to as a result of learning, which would involve ϵ-exploration if
using ϵ-greedy).

Off-policy: with enough observations, and a learning rate that becomes small in the limit,
the Q-values learned will correspond to the optimal policy.

SARSA is on-policy.

(c) Exploit: this means to follow maxaQ(s, a) in state s, rather than also explore (e.g., by
taking some other action with small probability ϵ > 0).

(d) SARSA updates:

• up (to state f): have s = c, a = up, r = 0, s′ = f, a′ =??, and we cannot do an update
yet

• left (to state e): now have s = c, a = up, r = 0, s′ = f, a′ = left , and we can do update
to Q(c, up):

Q′(c, up)← Q(c, up)+0.9((0+0.9Q(f, left))−Q(c, up)) = 0+0.9((0+0.9(0))− 0) = 0

• right (to state f): now have s = f, a = left , r = 100, s′ = e, a′ = right, and we can do
an update to Q(f, left):

Q′(f, left)← Q(f, left) + 0.9((100 + 0.9Q(e, right))−Q(f, left))

= 0 + 0.9((100 + 0.9(0))− 0) = 90

• down (to state c): now we have s = e, a = right, r = 0, s′ = f, a′ = down, and we can
do an update to Q(e, right):

Q′(e, right)← Q(e, right) + 0.9((0 + 0.9Q(f, down))−Q(e, right))

= 0 + 0.9((0 + 0.9(0))− 0) = 0
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8. K-Means [Typical]

In K-Means, we are given a set of points x1, . . . ,xN and a fixed number of clusters K. Our aim
is to find cluster centers µ1, . . . ,µK that represent the data.

(a) Define the K-Means loss function.

(b) What two steps does Lloyd’s algorithm repeat in order to find a good clustering?

(c) What is the asympotic run-time of each step of Lloyd’s algorithm, as a function of the
number of examples N and the number of clusters K?

(d) Given data that falls on two parallel diagonal lines as shown below, can Lloyd’s algorithm
with K = 2 find two clusters, such that each line is in one of the clusters?
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Solution.

(a) The objective is to find prototypes and an assignment to minimize

N∑
n=1

K∑
k=1

rnk||xn − µk||2

where rn is a one-hot vector with 1 in the position corresponding to the index of the assigned
cluster for the point xn.

(b) Step 1: assign each example to the closest prototype; step 2: for each cluster k, set µk to
the centroid of the assigned examples

µk :=
1

Nk

∑
n

rnkxn

where Nk =
∑

n rnk and rnk = 1 if xn assigned to cluster k, and 0 otherwise.

(c) Step 1 takes time NK because each example is checked for the closest of K prototypes.

Step 2 takes time N because each example is in exactly one cluster, and this is used once
in the averaging step.

Overall, the complexity is N + NK each iteration, and O(NK). [Note: (1) we choose to
ignore the dependence on number of features D.]

(d) Yes, for a suitable initialization.

Consider two clusters assignments, one to the top line and one to the bottom line, where
the cluster centers lie approximately at the middle of the respective line segments.

We need to check this is a stable assignment for K-means.

In particular, is each point in a cluster closer to its centroid than the centroid of the other
cluster?

This looks to be true, and thus K-means would converge on such a clustering if such
centroids were ever found during LLoyd’s algorithm.

Thus it is possible for K-means to find this clustering— so long as an appropriate initial-
ization is given! One way to see this is that it would work if the prototypes were simply
initialized to the cluster centers.
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9. Hidden Markov Models [Long] [You would need a calculator for this one!]

Consider a weather domain, with observations xt ∈ {D,R} (dry, rain) and hidden state st ∈
{C, S} (cloud, sun). Assume the following parameters:

• initial prob: p(s1 = C) = 0.7

• transition

Next State
p(st+1 | st) C S

State
C 0.8 0.2
S 0.1 0.9

• output

Output
p(xt | st) D R

State
C 0.25 .75
S 0.6 0.4

(a) For a general HMM, if the total number of timesteps is n and t < n is a timestep in the
middle of the sequence, why is p(st |x1, . . . ,xn) ̸= p(st |x1, . . . ,xt)? (An informal answer
is fine.)

(b) (Forward-backward algorithm). Now suppose we observe x1 = R, x2 = R.

We can calculate:

α1(s1) =

{
0.525 , if s1 = C
0.12 , if s1 = S

Use
α2(s2) = p(x2 | s2)

∑
s1

p(s2 | s1)α1(s1)

to compute the α2-values.
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(c) We have β2(s2) = 1. In addition, we can calculate:

β1(s1) =

{
0.68 , if s1 = C
0.435 , if s1 = S

Use these quantities, and

p(s2 |x1,x2) ∝ α2(s2)

p(s1 |x1,x2) ∝ α1(s1)β1(s1)

to infer the values of p(s1 |x1,x2) and p(s2 |x1,x2).

(d) Use p(x1,x2) =
∑

st
αt(st)βt(st) to calculate the likelihood of the data.
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Solution.

(a) The additional observations from t+1 to n may also be informative as to the hidden state
at period t. For example, the observation at xt+1 might only be possible if st has a value
that allows for st+1 to have a value that can generate xt+1.

(b) Calculations for the α2(s2) values are:

s1 s2 p(s2 | s1) p(R | s2) α1(s1) × (product)
C C 0.8 0.75 0.525 0.315
C S 0.2 0.4 0.525 0.042
S C 0.1 0.75 0.12 0.009
S S 0.9 0.4 0.12 0.0432

and then summing out s1, we obtain

s2 α2(s2)
C 0.315+0.009=0.324
S 0.042+0.0432=0.0852

(c) For t = 1, we have
p(s1 | R,R) ∝ α1(s1)β1(s1)

For s1 = C:
α1(C)β1(C) = (0.525)(0.68) = 0.357

For s1 = S:
α1(S)β1(S) = (0.12)(0.435) = 0.0522

We conclude that p(s1 = C |R,R) ≈ 0.872 and p(s1 = S |R,R) ≈ 0.128.

For t = 2, we have
p(s2 | R,R) ∝ α2(s2)

For s2 = C:
α2(C) = (0.324) = 0.324

For s2 = S:
α2(S) = (0.0852) = 0.0852

We conclude that p(s2 = C |R,R) ≈ 0.792 and p(s2 = S |R,R) ≈ 0.208.

(d) The likelihod of the data is

p(R,R) =
∑
s1

α1(s1)β1(s1) = (0.525)(0.68) + (0.12)(0.435) = 0.4092.

Equivalently, we could calculate using t = 2 alpha and beta values, and get

p(R,R) =
∑
s2

α2(s2)β2(s2) = (0.324)(1) + (0.0852)(1) = 0.4092
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10. Mean of a Mixture Model [Short]

For some class conditional distribution pclass, the details of which don’t matter for this question,
we are given a mixture model of the form

p(x; {πk}Kk=1,θ) =
K∑
k=1

θk pclass(x | z = Ck;πk) (3)

where example x ∈ RD.

(a) Draw a graphical model with plates to show the form of this mixture distribution for a
single example x. [Note: if you’re unfamiliar with the idea of “plate notation” for graphical
models, take a quick look at p.363-365 in Bishop’s book https://bit.ly/3eajKx5]

(b) Suppose that the mean of the class-conditional distribution for component k is given by µk.
Show that the mean of the overall mixture model is given by

E[x] =
K∑
k=1

θkµk.
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Solution:

(a) We draw this for a single x variable. Since πk and θ are parameters that are not random
variables, we don’t have circles around them.

z

θ

x

πk

K

(b) For this, it is convenient to work with latent variable z. We have

E[x] =
K∑
k=1

p(z = Ck;θ)Ex∼pclass(x|z=Ck;πk)[x]

=

K∑
k=1

θkµk
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11. Expectation Maximization [Typical]

We have a collection of binary images x1, . . . ,xN , each of which is 5× 5. We treat each image
xn as a 25-dimensional binary vector where the dth pixel is xn,d. We model an image as coming
from a mixture distribution, with a product-of-Bernoulli distribution for each component k:

p(xn;µk) =

25∏
d=1

µ
xn,d

k,d (1− µk,d)1−xn,d xn ∈ {0, 1}25 µk ∈ {0, 1}25 .

Each of theK components has parameters µk, where each dimension µk,d specifies the probability
that pixel d is black in an example from this component. The mixture weights are {θk}Kk=1 and
known. You will use EM to estimate the {µk} parameters.

(a) Write down the probability of generating a single image x, i.e.,

p(x; {µk}Kk=1,θ)

.

(b) What are the “latent variables” in this model? Draw the plate diagram for this model,
writing it for N examples, and indicating what is known and unknown. [Hint: see the
previous question for a pointer to plate diagrams]

(c) In the E-step, you find the probability with which example xn belongs to each component
fixing the parameters {µk}Kk=1; i.e., qn,k = p(zn = Ck |xn; {µk},θ) for each k. Derive the
expression for qn,k.

(d) In the M-step, you update the parameters {µk}Kk=1. Write down the expression for this,
making use of the q values. [No need to derive the answer. As a hint, for the supervised
case with class zn of each image (one-hot coded), the MLE for the parameters of class k
would be

µk,d =

∑N
n=1 zn,kxn,d∑N

n=1 zn,k

(intuitively, the percentage of times pixel d was black for the data in class k). ]
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Solution:

(a) Sum out over possible values of the latent variables z:

p(x | {µk}Kk=1;θ) =
K∑
k=1

p(z = Ck; θ)p(x | z = Ck;µk) =
K∑
k=1

θk

25∏
d=1

µxd
k,d(1− µk,d)

1−xd

(b) Plate diagram. The mixture weights θ and the parameters µk for each component k are
parameters and drawn without a circle.

zn

θ

xn

µk

K

N

(c) For example xn, we need to compute

qn,k = p(zn = Ck |xn; {µk},θ)

We do this by applying Bayes’ rule:

qn,k = p(zn = Ck |xx; {µk},θ) =
1

Z
p(zn = Ck;θ)p(xn | zn = Ck;µk)

The normalization term can be computed as Z =
∑

ℓ qn,ℓ.

(d) For EM we instead utilize the predicted assignments of each example to each component,
and have

µk,d =

∑N
n=1 qn,kxn,d∑N

n=1 qn,k
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12. PCA [Typical]

Consider a mean-centered data set of four points x1 = (1, 0), x2 = (−1, 0), x3 = (0,−2),
x4 = (0, 2).

(a) Compute the empirical covariance matrix S for this dataset.

(b) Draw a rough sketch of the distribution N (0,S) formed with this covariance matrix.

(c) If we were to run PCA on this data, what algebraic properties of the empirical covariance
matrix correspond to first and second principal components? What are the first and second
principal components in this example? [Hint: you should be able to easily recognize them
without computation]

(d) Graph the four points after running PCA and projecting down to a single dimension. What
is lost in this transformation?
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Solutions:

(a) The empirical covariance matrix is defined as 1
N

∑N
n=1(xn − x̄)(xn − x̄)⊤.

1

4

([
1 0
0 0

]
+

[
1 0
0 0

]
+

[
0 0
0 4

]
+

[
0 0
0 4

])
=

[
0.5 0
0 2

]
(b) Here’s what it looks like. We’d hope for a rough sketch of this form, i.e. that it is an

axis-aligned ellipse. The particular position of the contours wouldn’t matter.

(c) The first and second principal components correspond to the eigenvectors with the first
and second highest eigenvalues of the empirical covariance matrix, respectively. In this
case they have a simple form u1 = [0, 1] with Su1 = 2u1 and u2 = [1, 0] with Su2 = 0.5u2.
This can also be seen visually from the data.

(d) Projecting to one dimension corresponds to projecting onto the first principal component,

zn = (x⊤
nu1)u1.

Given u1, this takes a simple form and drops the x1 component of each data point. We
have a projection to 1-D of:

z1 = 0, z2 = 0, z3 = −2, z4 = 2

This has the effect of collapsing x1 and x2 to the same point, but keeps the distinction
between x3 and x4.
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