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April 19, 2022

These practice questions are illustrative of the kinds of understanding that you should expect
to be tested on the midterm. If anything they are slightly more difficult than the questions on the
exam. You can expect around 5 questions on the midterm and you will have 75 minutes. This
means that a typical question should take 15 minutes. But some will be shorter, some longer and
say 10 mins vs 20 min questions. We’ve provide rough guidance here (“short”), (“typical”) and
(“long”).
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1. Hierarchical Agglomerative Clustering [Short]

Consider nine points x1, . . . , x9 shown below, where the y-axis provides their values. We define
d(x, x′) = |x− x′|, and consider two different cluster distances.

Draw the dendrogram for the data. Join together clusters one per step (on the horizontal-
axis), breaking ties towards joining lower x values first. In the top figure, use the min-linkage
distance and in the bottom figure use the max-linkage distance.

(a) Min Linkage:
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(b) Max Linkage:
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2. Bayesian networks [Typical]

Consider the following Bayesian network, where the variables are all Boolean.

The ‘+’ annotations indicate the direction of the local effect; e.g., the ‘+’ from U to W means
that for each value v of V ,

p(W = true |U = true, V = v) > p(W = true |U = false, V = v).

For each of the following questions, select one of the following, and also state which (if any)
undirected paths are blocked (in the sense of d-separation):

= if the two probabilities are necessarily equal;

< if the first probability is necessarily smaller;

> if the first probability is necessarily larger;

? if none of these cases hold.

(a) p(V = true | Y = false) p(V = true | Y = true)

(b) p(V = true | Z = false) p(V = true | Z = true)

(c) p(U = true |W = true, Y = false) p(U = true |W = true, Y = true)

(d) p(Y = true | Z = true,X = false) p(Y = true | Z = true,X = true)

(e) p(U = true | Y = true, Z = false) p(U = true | Y = true, Z = true)

3



3. Bayesian networks [Long]

Consider this example of a Bayesian network with binary variables. It models a garden lawn
and whether or not the grass is wet.

(a) Construct an alternative Bayesian network that models the same distribution for variable
ordering, S,C,R,W . That is, add S, then C with any required edge, then R with any
required edges, then W with any required edges. Don’t specify conditional proba-
bility tables. [Hint: Use the given Bayesian network to determine which conditional
Independence properties hold amongst preceding variables, and only include needed edges.]

(b) Is this new Bayesian network a correct model of the distribution? Which network do you
consider to be preferable, if any?
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(c) Going back to the original network, what is the probability that it is not cloudy, rains,
sprinkler doesn’t run, and grass is wet?

(d) In the original network: write down the first two steps of variable elimination for p(W ),
eliminating C and then S. Perform the numerical calculations!
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4. Markov Decision Process (modeling). [Long] [Harder than an MDP modeling question
you’d expect on Spring 2021 midterm]

You are asked to develop a Markov Decision Process (MDP) to be used for the control of a single
elevator. To model:

• There are three floors

• There are three buttons inside the car

• There is a single call button outside on each floor

• The door of the elevator opens and closes.

The “agent” here is the elevator itself, and the aim of the system is to get passengers to their
appropriate floors.

(a) Describe in words the states, actions, reward function, and transition model for a suitable
MDP model. Make sure that the reward function is clear.

(b) Explain your model as you introduce it. From your explanation the reader should under-
stand the idea for why an optimal policy should lead to an efficient system.

NOTE: There is no single correct answer here.
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5. Alternate Reward Function for MDPs [Short]

We have been assuming that the reward function for an MDP has the form r(s, a). Also recall
that we have written value iteration for infinite-horizon problems as:

V ′(s)← max
a

[
r(s, a) + γ

∑
s′

p(s′ | s, a)V (s′)

]
(1)

Now, imagine that we have a reward function that depends on both the current state and the
next state, i.e., r(s, a, s′).

(a) Explain why this kind of reward function can be useful from a modeling perspective

(b) Write an expression for the value iteration step that incorporates this alternative type of
reward.

(c) Explain formally why this approach is neither more general nor less general than an MDP
model that insists on just using r(s, a).
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6. Planning in MDPs [Typical]

Consider a gridworld with the layout below. From each square, the agent may move into an
adjoining square (up, down, left, right) or stay in place. If a policy specifies a move into a square
which does not exist (i.e. down from one of the squares in the bottom row), the agent stays
in place. Actions are deterministic, that is, they always have their intended effect. We use an
infinite horizon with discount γ = 1. [This keeps the math simple in this example]

The robot starts in the state marked with an S. Upon reaching the state marked G the agent
transitions into an absorbing state where it stays forever. The rewards associated with a
state are the reward for taking any action from that state.

Recall the policy improvement step in policy iteration (where V π is the value function of the
current policy):

π′(s)← argmax
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V π(s′)

]
, ∀s

(a) Suppose that we follow the policy given
by the arrows. What is the MDP value of
each state under this policy? [You can figure
this out by inspection of the policy and the
environment]

(b) Can this policy be improved? To check
this, (1) use policy improvement and draw
the adjusted policy and (2) compute the new
value function in each state.

(c) Is the new policy optimal? [Hint: you
should be able to argue yes/no directly, with-
out doing another round of policy iteration]
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7. Reinforcement learning [Typical]

The update rule for SARSA reinforcement learning is:

Q(s, a)← Q(s, a) + α[(r + γQ(s′, a′))−Q(s, a)]. (2)

(a) What are the different quantities, how are they generated (e.g., which by the agent, which
from the environment), and what is the idea of the update?

(b) What is meant by ‘on-policy’ and ‘off-policy’ reinforcement learning, and is SARSA an
on-policy or off-policy method?

(c) What does it mean to exploit in the context of reinforcement learning?

(d) Consider this simple MDP world, where the reward is 100 for any action taken in state f
and 0 in all other states and actions are deterministic (thus ‘up’ always moves ‘up’).

Assume the Q-values are initialized to 0, and the agent is initially in state c. What are the
updates made by SARSA following each action (for α = 0.9 and γ = 0.9).

Assume that no update is possible until the values of s, a, r, s′, a′ are all well-defined.

i. up (to state f)

ii. left (to state e)

iii. right (to state f)

iv. down (to state c)
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8. K-Means [Typical]

In K-Means, we are given a set of points x1, . . . ,xN and a fixed number of clusters K. Our aim
is to find cluster centers µ1, . . . ,µK that represent the data.

(a) Define the K-Means loss function.

(b) What two steps does Lloyd’s algorithm repeat in order to find a good clustering?

(c) What is the asympotic run-time of each step of Lloyd’s algorithm, as a function of the
number of examples N and the number of clusters K?

(d) Given data that falls on two parallel diagonal lines as shown below, can Lloyd’s algorithm
with K = 2 find two clusters, such that each line is in one of the clusters?
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9. Hidden Markov Models [Long] [You would need a calculator for this one!]

Consider a weather domain, with observations xt ∈ {D,R} (dry, rain) and hidden state st ∈
{C, S} (cloud, sun). Assume the following parameters:

• initial prob: p(s1 = C) = 0.7

• transition

Next State
p(st+1 | st) C S

State
C 0.8 0.2
S 0.1 0.9

• output

Output
p(xt | st) D R

State
C 0.25 .75
S 0.6 0.4

(a) For a general HMM, if the total number of timesteps is n and t < n is a timestep in the
middle of the sequence, why is p(st |x1, . . . ,xn) ̸= p(st |x1, . . . ,xt)? (An informal answer
is fine.)

(b) (Forward-backward algorithm). Now suppose we observe x1 = R, x2 = R.

We can calculate:

α1(s1) =

{
0.525 , if s1 = C
0.12 , if s1 = S

Use
α2(s2) = p(x2 | s2)

∑
s1

p(s2 | s1)α1(s1)

to compute the α2-values.
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(c) We have β2(s2) = 1. In addition, we can calculate:

β1(s1) =

{
0.68 , if s1 = C
0.435 , if s1 = S

Use these quantities, and

p(s2 |x1,x2) ∝ α2(s2)

p(s1 |x1,x2) ∝ α1(s1)β1(s1)

to infer the values of p(s1 |x1,x2) and p(s2 |x1,x2).

(d) Use p(x1,x2) =
∑

st
αt(st)βt(st) to calculate the likelihood of the data.
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10. Mean of a Mixture Model [Short]

For some class conditional distribution pclass, the details of which don’t matter for this question,
we are given a mixture model of the form

p(x; {πk}Kk=1,θ) =
K∑
k=1

θk pclass(x | z = Ck;πk) (3)

where example x ∈ RD.

(a) Draw a graphical model with plates to show the form of this mixture distribution for a
single example x. [Note: if you’re unfamiliar with the idea of “plate notation” for graphical
models, take a quick look at p.363-365 in Bishop’s book https://bit.ly/3eajKx5]

(b) Suppose that the mean of the class-conditional distribution for component k is given by µk.
Show that the mean of the overall mixture model is given by

E[x] =
K∑
k=1

θkµk.
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11. Expectation Maximization [Typical]

We have a collection of binary images x1, . . . ,xN , each of which is 5× 5. We treat each image
xn as a 25-dimensional binary vector where the dth pixel is xn,d. We model an image as coming
from a mixture distribution, with a product-of-Bernoulli distribution for each component k:

p(xn;µk) =

25∏
d=1

µ
xn,d

k,d (1− µk,d)
1−xn,d xn ∈ {0, 1}25 µk ∈ {0, 1}25 .

Each of theK components has parameters µk, where each dimension µk,d specifies the probability
that pixel d is black in an example from this component. The mixture weights are {θk}Kk=1 and
known. You will use EM to estimate the {µk} parameters.

(a) Write down the probability of generating a single image x, i.e.,

p(x; {µk}Kk=1,θ)

.

(b) What are the “latent variables” in this model? Draw the plate diagram for this model,
writing it for N examples, and indicating what is known and unknown. [Hint: see the
previous question for a pointer to plate diagrams]

(c) In the E-step, you find the probability with which example xn belongs to each component
fixing the parameters {µk}Kk=1; i.e., qn,k = p(zn = Ck |xn; {µk},θ) for each k. Derive the
expression for qn,k.

(d) In the M-step, you update the parameters {µk}Kk=1. Write down the expression for this,
making use of the q values. [No need to derive the answer. As a hint, for the supervised
case with class zn of each image (one-hot coded), the MLE for the parameters of class k
would be

µk,d =

∑N
n=1 zn,kxn,d∑N

n=1 zn,k

(intuitively, the percentage of times pixel d was black for the data in class k). ]
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12. PCA [Typical]

Consider a mean-centered data set of four points x1 = (1, 0), x2 = (−1, 0), x3 = (0,−2),
x4 = (0, 2).

(a) Compute the empirical covariance matrix S for this dataset.

(b) Draw a rough sketch of the distribution N (0,S) formed with this covariance matrix.

(c) If we were to run PCA on this data, what algebraic properties of the empirical covariance
matrix correspond to first and second principal components? What are the first and second
principal components in this example? [Hint: you should be able to easily recognize them
without computation]

(d) Graph the four points after running PCA and projecting down to a single dimension. What
is lost in this transformation?
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