
CS181 Spring 2022 Midterm Review Section

Sean Ty, Oliver Cheng

February 2022

1 Regression

1.1 Linear Regression

Consider data points {(xn, yn)}Nn=1 where the x’s have p dimensions. In linear regression, we think
there is a linear relationship between the predictors and the response: noise + w0 +wTxn = yn.

Bias Trick For ease of notation, we sometimes add an intercept term to each observation x instead,
so that the model becomes noise + wTxn = yn. For instance, if originally xn = (3.14, 2.71) then
if we use the bias trick, it becomes xn = (1, 3.14, 2.71). We do this so that we can absorb the w0

term into the vector w. In this handout we will be automatically using the bias trick.

Loss Function Purely a function of the observed response and the model predictions, L(y, ŷ).
Intuitively, we can think of this as how much the model messed up. For linear regression, we use the
sum of squared errors: L =

∑N
n=1(yn− ŷn)

2. Sometimes we use the absolute errors
∑N

n=1 |yn− ŷn|,
which is less sensitive to outliers, but there is no closed form.

Deriving Optimal Weights Note that we predict ŷn = wTxn. We then want to minimize the
loss

∑N
n=1(yn − wTxn)

2. Taking the derivative of this with respect to w and setting to zero, we
get w∗ = (XTX)−1XT y. Note that X here is the model matrix, where each row corresponds to
each xT

n , and each element of y is yn.

Basis Functions These give our model flexibility by using transformed versions of the predictors.
For instance, if we believed that there is a quadratic relationship between x and y, we would use
the basis 1, x, x2 and form a linear regression with these features instead.

1.2 K-Nearest Neighbors

We predict the response of a new data point (x∗, y∗) to be the average of the responses of the K
observations that are “closest” to the new data point. We select K, which is sometimes called the
hyperparameter.

A few things to consider:

1

1. Need a notion of distance between the x’s. Usually, we use the Euclidean metric. Note that
because of this, using KNN on datasets with categorical predictors can be tricky.

2. KNN interpolates in a more “steppy” manner, and is constant when we extrapolate.

1.3 Kernelized Regression

We predict a new data point (x∗, y∗) with a kernel K(x,x∗) on our training data {(xi, yi)}Ni=1.

y∗ =

N∑
i=1

K(xi,x
∗)yi.

This technique is essentially equivalent to taking a weighted average of your data to find y∗, where
the weights are determined by K(x,x∗).

1.4 Regularization

Trades off bias and variance, which could lower MSE as a result. Note that we do not penalize
the intercept term. Intuitively, can think of higher regularization as trading off more bias for
less variance.

1. Ridge regression: Adds a penalty term λ
∑p

i=1 w
2
i = λ∥w∥22 (do not penalize intercept

term).

(a) Results in smoother regularization, where parameters are shrunk towards zero as regu-
larization rate λ increases.

(b) Closed form solution for optimal w exists: wridge = (XTX + λI)−1XT y.

2. Lasso regression: Adds penalty term λ
∑p

i=1 |wi| = λ∥w∥1 (again, do not penalize intercept
term).

(a) Results in more discretized regularization, where parameters are sent to zero as regular-
ization rate λ increases.

(b) Closed form solution does not exist. Can use methods such as gradient descent to find
optimal w.

Addendum for practical applications: We usually normalize (i.e. center and scale to a sample
variance of 1) each feature before regularizing. Can you see why?

2 Bayesian Regression

2.1 Regularization

Connection to frequentist:

1. For ridge regression, use normal prior on w: w ∼ N (0, τ2I). Compute posterior of w based
on observed data, and posterior mode (MAP) becomes ridge estimate.

2. For lasso regression, the same idea except with a Laplace prior.

2

3. Useful to note normal-normal conjugacy, and beta-binomial conjugacy.

2.2 More Bayesian

1. Posterior of w: we update our confidence on w as we have more observations, given by

p(w|D) =
p({yn}|{xn},w)p(w)

p({yn}|{xn})
.

2. Posterior predictive: how can we use observed data to better predict? We have a probability
distribution for response given data:

p(y|x, D) =

∫
w

p(y|x,w)p(w|D) dw.

3. Marginal likelihood: compute

p(D) =

∫
w

p(D|w)p(w) dw.

If considering too many possiblke models w, then p(w) will be spread out, which makes
integral low. If p(w) does not contain good models, then p(D|w) would be very low. This is
how Bayesian methods penalize complicated models.

3 Classification

Common Loss Functions . Loss functions are used to calculate how ”wrong” our set of param-
eters are.

1. 0/1 Loss: Loss that is 0 if classified correctly, and 1 otherwise. Is this a good loss?

2. Hinge Loss: Loss that is 0 if classified correctly, and “how wrong” we are otherwise. Com-
ments: Gradient is computable here, where the only computable terms will be those that were
incorrectly classified and not on the decision boundary.

3. Logistic Loss: This also referred to as cross-entropy loss or log loss or negative log likelihood.
The idea behind this is to maximize the likelihood function,

L(w) = −
N∑

n=1

yn log(p(yn|x)) + (1− yn) log(1− p(yn|x)).

This come directly from the task of trying to maximize the likelihood

p(y|w) =
∏
n

p(yn = 1|xn)
yn (1− p(yn = 1|xn))

1−yn .

3

The multi-class analogue comes from taking the negative log of the following expression for K
classes,

p(y|W) =

N∏
n=1

K∏
k=1

p(yn = Ck|xn)
ynk .

To be clear, yn is generally encoded as a one-hot vector, and equality to class Ck just means
that this data point is classified as class k.

Why can’t we use OLS/MSE as a loss function for classification?

Stochastic Gradient Descent All this involves is computing the gradient on a subset of our
data. This subset at each iteration will be random, and updates will only be on this subset. The
main purpose for SGD is to increase efficiency, especially if data is clustered, then computing several
gradients at similar points is not particularly helpful.

Note that one case of stochastic gradient descent is the perceptron algorithm, where you only
compute the derivative on one single datapoint. This will always converge as each iteration slightly
tilts our hyperplane to classify better, but only if our data is linearly separable. This condition is
necessary as otherwise the algorithm would not stop, and in general all logistic regressors build a
linear decision boundary with respect to their basis. A proof and more detailed explanation by
Kalyanakrishnan can be found here.

Generative Models Instead of modeling p(y|x), we model the joint p(x, y)–i.e. we model how
the data is being generated. We usually assume that data point is modeled by first choosing the
class y, then generating the feature values x. We use

p(y∗ = Ck|x∗) ∝ p(x∗|y∗ = Ck)p(y
∗ = Ck).

Note that in particular this requires us to provide a prior for the classes.

Generative vs. Discriminative The key difference between them is that discriminative models
the conditional p(y|x) (i.e. it “discriminates” based on the features). Meanwhile, generative models
the joint p(x, y) ∝ p(x|y)p(y)–i.e. it models how the data are generated.

Examples: For discriminative, we could be classifying the brands of cars based on features like
price, number of seats, engine, etc. For generative, we could be doing sentiment analysis in NLP,
where we are modeling the probability of a specific word appearing together with a response senti-
ment (this is also a great example of Naive Bayes in applications).

Naive Bayes A simplifying assumption of conditional independence, so that

p(x∗|y∗ = Ck) =

D∏
i=1

p(x∗
i |y∗ = Ck).

This assumption significantly simplifies calculations.

4

https://www.cse.iitb.ac.in/~shivaram/teaching/old/cs344+386-s2017/resources/classnote-1.pdf

4 Model Selection

Bias and Variance of a model Important to note here that the dataD was generated randomly.
Since we fit a model onto the data, our trained model fD is also random. Averaging over all
possibilities of D, we obtain a mean model f . Let’s say we want to predict the value given a
predictor x.

1. Bias: Quantifies the intuition: “Given enough data, how far will our model be from the true
mean?” Given by the quantity

Bias = f(x)− y.

2. Variance: Quantifies the intuition: “How much does our model change if our data set
changes?” Given by the quantity

Variance = ED[(fD(x)− f(x))2)].

3. Combining together: Expected generalization error for a new data point x is given by
Error = bias2 + variance + noise.

4. Bias-Variance Tradeoff : Controllable factors for generalization error are bias and variance
of model. Usually a tradeoff between bias and variance–opting for less bias means more
variance, and vice-versa.

Cross-Validation Used to prevent overfitting, when tuning hyperparameter values. We essentially
create artificial copies of train and validation sets, to better see how a specific set of hyperparameters
perform under “new data.” The best set of hyperparameters is evaluated on the test set.

1. K-fold Cross Validation: Divide training data into K disjoint (roughly) equally sized sets.
For each set, we can allocate it as the validation set and train the model with the remaining
K − 1 sets. Compute the loss for each iteration and average, choosing the hyperparameter
setting with least average loss.

5 Neural Networks

Recall in linear regression the importance of adding a basis in order to improve the predictive ability
of our model. Fundamentally, neural networks were built upon this idea.

5.1 Activation Functions

If we did not have activation functions, there would be no interesting basis (why?). Four functions

• Linear: ϕ(x) = ax

• Rectified Linear Unit (ReLU): ϕ(x) = max(0,x). This ends up being the gold standard for
activation functions.

5

• Sigmoid: ϕ(x) =
1

1 + e−x
. Motivation for finite range is that a weight should most likely

never tend to infinity.

• Tanh: ϕ(x) =
ex − e−x

ex + e−x
. Compared to sigmoid, this performs better due to stronger (steeper)

gradients and being centred around 0.

5.2 Forward Pass

Given a data set, we can compute our predictions via a forward pass. Due to the power of matrix
multiplication, we can do this all extremely quickly. Namely, if layer ℓ has Nℓ nodes, and the weight

matrix is W = (w
(ℓ)
ij), we can calculate the value for each node as according to the diagram.

Figure 1: Forward pass where Z(ℓ) (Nℓ × 1) represents the nodes in the layer ℓ.

In particular, the value of the subsequent nodes z
(ℓ+1)
i in the forward pass is

z
(ℓ+1)
i = ϕℓ(w0,ℓ +

Nℓ∑
k=1

z
(ℓ)
k w

(ℓ)
ik).

Where ϕℓ is our activation function for the layer ℓ.

5.3 Loss Function

There are two choices, for regressions we use least squares, while for classification we use soft-
max/logistic regression.

5.4 Backpropagation

Backpropagation is the technique we will use to update the parameters of our model. It is the
equivalent to gradient descent, but the update is for each layer of the Neural Network. We want to
compute the gradient of the loss with respect to the weights, but doing this directly is infeasible,

6

so set WℓZ
(ℓ) + w0,ℓ = A(ℓ) and we will use the chain rule as follows:

∂L
∂Wℓ

=
∂L

∂Z(ℓ)

∂Z(ℓ)

∂A(ℓ)

∂A(ℓ)

∂Wℓ
.

We have three terms here.

• ∂L
∂Z(ℓ) . At the last layer, this can be directly computed from the loss function. To compute
the error term at layer ℓ.

∂L
∂Z(ℓ)

=
∂L

∂Z(L)

∂Z(L)

∂Z(L−1)
· · · ∂Z

(ℓ+1)

∂Z(ℓ)
.

Where ∂Z(ℓ+1)

∂Z(ℓ) = ϕ′
ℓ

(
A(ℓ)

)
Wℓ

• ∂Z(ℓ)

∂A(ℓ) , this is simply the gradient of the activation function ϕℓ.

• ∂A(ℓ)

∂Wℓ
. We can compute this directly, since it is a linear combination, we have ∂A(ℓ)

∂Wℓ
= W (ℓ).

Figure 2: Backpropagation between layer ℓ and ℓ+ 1

7

	Regression
	Linear Regression
	K-Nearest Neighbors
	Kernelized Regression
	Regularization

	Bayesian Regression
	Regularization
	More Bayesian

	Classification
	Model Selection
	Neural Networks
	Activation Functions
	Forward Pass
	Loss Function
	Backpropagation

