
CS 181 Spring 2021 Section 11
HMMs, Kalman Filters, and MDP’s

1 Hidden Markov Models

A Hidden Markov Model (HMM) is useful for inferring a sequence of un-
known or hidden states from a corresponding sequence of observed evidence.

1.1 Graphical Model

Consider a sequence of one-hot encoded states s1,...,sn where st ∈ {Sk}ck=1,
and a corresponding sequence of observations (x1,...,xn) where xt ∈ {Oj}mj=1.
Each state can be one of c possible states, and each observation can be one
of m possible observations. Note that N is the number of data points (each
of which is a sequence), where n is the length of a sequence (assume all
sequences are the same length).

1.2 Model Assumptions

HMMs are characterized by and allow us to reason about the following joint
distribution

p(s1, . . . , sn,x1, . . . ,xn) = p(s1, . . . , sn)p(x1, . . . ,xn | s1, . . . , sn)

However, it’s not immediately obvious how we should optimize this
model, and the following assumptions make this easier:

• The future hidden state is independent of past hidden states given the
present (Markov Property):

p(st+1 | s1, . . . st,x1, . . . ,xt) = p(st+1 | st)

• Observations only depend on the present hidden state:

p(xt | s1, . . . , st,x1, . . . ,xt−1) = p(xt | st)

1

Notice that the above assumptions allow us to factor the joint as follows:

p(s1, . . . , sn,x1, . . . ,xn) =

p(s1, . . . , sn)p(x1, . . . ,xn | s1, . . . , sn) =

p(s1)

n−1∏
t=1

p(st+1 | st)
n∏
t=1

p(xt | st)

1.3 Exercise: When to Use HMMs (Source: CMU)

For each of the following scenarios, is it appropriate to use a Hidden Markov
Model? Why or why not? What would the observed data be in each case,
and what would the hidden states capture?

1. Stock market price data

2. Recommendations on a database of movie reviews

3. Daily precipitation data in Boston

4. Optical character recognition for identifying words

2

1.4 Parameterization

• θ ∈ Rc: defines the prior distribution over initial hidden states

• T ∈ Rc×c: transition matrix where Tkj is the probability of transition-
ing from Sk to Sj

• {π}ck=1: conditional probabilities of observations given hidden states
such that p(xt = Oj |st = Sk; {π}) = πkj . ∀k πk ∈ Rm.

First, we need to estimate the parameters from the data, which we can
do with a variant of EM. Then, with our trained HMM, we are able to
perform several inference tasks on our data.

1.5 Forward-Backward Algorithm

The HMM model is characterized by the joint distribution p(s1, . . . , sn,x1, . . . ,xn),
which means that many of our training and inference tasks require marginal-
ization to obtain conditionals. Thus, naive algorithms can be expensive
(they require lots of nested summations over states), and we use EM in-
stead. We define the recurrence relations αt(st) and βt(st) in the E-Step:

• αt(st) represents the joint probability of observations 1, . . . , t and state
t. αt can be defined in terms of αt−1. We move forwards through the
sequence to calculate the α’s

• βt(st) represents the joint probability of observations t+ 1, . . . , n con-
ditioned on state t. βt can be defined in terms of βt+1. We move
backwards through the sequence to calculate the β’s.

3

(a) alpha

(b) beta

Note that the probabilities we use for calculating α and β are given by
the parameters that we fix in the E-Step.

∀st : αt(st) =

{
p(xt | st)

∑
st−1

p(st | st−1)αt−1(st−1) if 1 < t ≤ n
p(x1 | s1)p(s1) o.w.

∀st : βt(st) =

{ ∑
st+1

p(st+1 | st)p(xt+1 | st+1)βt+1(st+1) if 1 ≤ t < n

1 o.w.

1.6 EM for HMMs

Given data points {xi}Ni=1 defined by sequences (xi1, . . . , x
i
n) of length n rep-

resented as row vectors, we want to infer the parameters {T,θ, {πk}}. Had
we been given the true states, we could easily compute joint probability
p(xi, si) and write the complete-data log likelihood, and maximize with re-
spect to the parameters. Instead, we need to estimate state distributions
and parameters iteratively.

1.6.1 Inference Patterns with α,β

The following patterns are useful for inference with a trained HMM as well
as during the E-Step:

4

• αt(st)βt(st) = p(x1, . . . ,xn, st) ∝ p(st|x1, . . . ,xn)

• joint of observations: p(x1, . . . ,xn) =
∑

st
αt(st)βt(st) (for any t)

• smoothing: p(st |x1, . . . ,xn) ∝ p(x1, . . . ,xn, st) = αt(st)βt(st)

• prediction: p(xn+1 |x1, . . . ,xn) ∝
∑

sn,sn+1
αn(sn)p(sn+1 | sn)p(xn+1 | sn+1)

• transition: p(st, st+1 |x1, . . . ,xn) ∝ αt(st)p(st+1 | st)p(xt+1 | st+1)βt+1(st+1)

1.6.2 E-Step

The goal of the expectation step is to compute the expected values of the
hidden states given a fixed set of parameters w = {T,θ, {πk}}. That is, we
estimate the state distribution for si1, . . . , s

i
n given xi.

Let the c × 1 vector qit = (qit1, . . . , q
i
tc) represent xi’s distribution over

states for time t under the current parameters. Let Qi
t,t+1 be the c×c matrix

of transition probabilities under the current parameters. Then

• α’s and β’s are defined in terms of fixed parameters.

• q’s are defined in terms of α’s and β’s

• Calculate qitk = p(sit = Sk|xi; w) for all t and k (use smoothing eq.
just above)

• Calculate qit,t+1,k,` = p(sit = Sk, s
i
t+1 = S`|xi; w) (use transition eq.

just above)

1.6.3 M-Step

Now we need to update our parameters to maximize the expected complete-
data log likelihood ES[ln p(x,S; w)]. Applying the appropriate Lagrange
multipliers and maximizing with respect to each of the parameters of inter-
est, we recover the following update equations:

N̂1k =

N∑
i=1

qi1k (first period) and more generally N̂k =
N∑
i=1

n∑
t=1

qitk (all periods)

N̂−nk =
N∑
i=1

n−1∑
t=1

qitk (without last period)

5

N̂k` =
N∑
i=1

n−1∑
t=1

qit,t+1,k,` (transitions)

N̂kj =
N∑
i=1

n∑
t=1

qitkx
i
tj (observations)

θ̂k =
N̂1k

N
π̂kj =

N̂kj

N̂k

t̂k` =
N̂k`

N̂−nk

6

1.7 Exercise: Parameter Estimation in Supervised HMMs

You are trying to predict the weather using an HMM. The hidden states are
the weather of the day, which may be sunny or rainy, and the observable
states are the color of the clouds, which can be white or gray. You have
data on the weather and clouds from one sequence of four days (note: the
hidden states are observed here):

Day Weather Clouds

1 Sunny White
2 Rainy Gray
3 Rainy Gray
4 Sunny Gray

1. Draw a graphical model representing the HMM.

2. Give the values of N,n, c and of the one-hot vectors
s11, . . . , s

1
4,x

1
1, . . . ,x

1
4.

3. Estimate and interpret the values of the parameters θ,T, {πk}ck=1 us-
ing the MLE estimators for the supervised HMM:

θ̂k =
N1k

N
, t̂kl =

Nkl

N−nk
, π̂kj =

Nkj

Nk

Nk =

N∑
i=1

n∑
t=1

sitk, N1k =

N∑
i=1

si1,k, N−nk =

N∑
i=1

n−1∑
t=1

sitk

Nkl =
N∑
i=1

n−1∑
t=1

sit,ks
i
t+1,l, Nkj =

N∑
i=1

n∑
t=1

sitkx
i
tj

7

1.8 Exercise: EM for HMMs

You are trying to model a toy’s state using an HMM. At each time step, the
toy can be active (state 1) or inactive (state 2), but you can only observe
the color of the indicator light, which can be red (observation state 1) or
green (observation state 2). You have collected data from one sequence:

Time Light

1 Green
2 Red
3 Green

You initialize your EM with θ = [12
1
2]>,T =

[
2
3

1
3

1
3

2
3

]
,π1 = [14

3
4]>,π2 =

[34
1
4]>.

1. Compute α1, α2, α3, β1, β2, β3 for the forward-backward algorithm us-
ing the initial parameter values.

2. Refer to the definition of q1
t in Section 1.6.2. Now, compute the values

of q1
1,q

1
2 using the α and β values.

3. Refer to the definition of Q1
t,t+1 in Section 1.6.2. Compute the value

of Q1
1,2 using the α and β values.

During EM, at one point you obtain the following values after the E step:

q1
1 =

[
2

3

1

3

]>
, q1

2 =

[
1

3

2

3

]>
, q1

3 =

[
2

3

1

3

]>

Q1
1,2 =

[
1
6

1
2

1
6

1
6

]
, Q1

2,3 =

[
1
6

1
6

1
2

1
6

]
1. Use the above values to compute N̂k, N̂kl, N̂kj .

2. Complete the M step by updating the parameters θ,T,π1,π2.

8

2 Markov Decision Processes

A Markov Decision Process (MDP) is a framework for modeling an agent’s
actions in the world. It consists of:

1. A set of states S

2. A set of actions A

3. A reward function r : S ×A→ R

4. A transition model p(s′|s, a), ∀s, s′ ∈ S, a ∈ A.

A policy π is a mapping from states to actions, i.e. π : S → A.

2.1 Finite time horizon MDP

In the finite horizon setting, a policy may vary with the number of time
periods remaining. π(t) denotes the policy with t time steps to go. T is the
decision horizon. The value of a policy with t time steps to go is defined
inductively to be:

V π
(t)(s) =

{
r(s, π(1)(s)) if t = 1

r(s, π(t)(s)) +
∑

s′∈S p(s
′|s, π(t)(s))V π

(t−1)(s
′) o.w.

(1)

The process of computing these values inductively, working from the end
of the horizon to the present, is called value iteration. If we instead look
forward in time, we are computing the expected value of the policy

V π
T (s) = Es1,...,sT

[
T∑
t=0

r(st, π(T−t)(st))

]
(2)

by induction, where s1 := s. V π(s) is the MDP value function.
In an MDP, the general goal is to find an optimal policy by maximizing

the expected reward under the policy, i.e. maximizing the value function.
This is the planning problem.

9

2.2 Infinite Horizon MDP

Policy Evaluation We can also send T → ∞, i.e. have an infinite time
horizon. In that case, we need a discount factor 0 < γ < 1, and we want to
compute the value function

V π(s) = Es1,s2,...

[∞∑
t=0

γtr(st, π(st))

]
(3)

where s1 := s, and the γ factor ensures convergence (assuming bounded
rewards). In this setting, we only worry about stationary policies that don’t
vary with time. This is the policy evaluation problem; for any given policy
π, we can find V π(s) by solving the system of linear equations

V π(s) = r(s, π(s)) + γ
∑
s′∈S

p(s′|s, π(s))V π(s′) (4)

These capture consistency about the value function. To solve this system,
we can use Gaussian elimination, or simply iterate until convergence as in
the finite horizon case.

Given a policy π and θ (small positive number), we find V π iteratively as
follows:

• Initialize: V (s) = 0 for all states s.

• Repeat

– Update step:

V ′(s) = r(s, π(s)) + γ
∑
s′∈S

p(s′|s, π(s))V (s′), ∀s (5)

– ∆ = max(|V ′ − V |)
– V ← V ′

until ∆ < θ

Value Iteration Suppose we have an optimal policy π∗. This satisfies the
following set of equations known as the Bellman equations:

V ∗(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V ∗(s′)

]
(6)

10

where V ∗ , V π∗ . Assuming we know V ∗, we can read off the optimal policy
by setting

π∗(s) = arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V ∗(s′)

]
(7)

In order to find V ∗, we can use value iteration:

• Initialize: V (s) = 0 for all states s.

• Update step (Bellman operator):

V ′(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V (s′)

]
, ∀s (8)

• V ← V ′

where we iterate until convergence of V , which is guaranteed. With our
converged V , we can then find π∗ as in Equation 7.

Policy Iteration Another approach to planning is called policy iteration.
To do policy iteration, we evaluate a proposed policy π by finding V π as
in Equation 4. This is Evaluation step (E step). Then, we do a policy
improvement step (I step) by the equation

π′(s)← arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V π(s′)

]
, ∀s (9)

We repeat the E and I steps until the policy π converges (stops changing).
Note that policy iteration takes more computation per iteration, but

tends to converge faster in practice.

11

2.3 Exercise: Markov Decision Process

(Sutton & Barto 2012) Consider an MDP on the following grid:

A

B

At each square, we can go left, right, up, or down. Normally we get a
reward of 0 from moving, but if we attempt to move off the grid, we get a
reward of −1 and stay where we are. Also, if we move onto square A, we
get a reward of 10 and are teleported to square B.

Suppose our actions also fail with probability 0.5, i.e. with probability 0.5
we stay on the current square. Also suppose our MDP is infinite horizon,
and take γ = 0.9 to be the discount factor.

1. Defining the MDP Identify the states S, actions A, rewards, and
transition probabilities p(s′|s, a) in this problem.

2. Policy Evaluation Suppose π is the policy where we always choose
to go right. Write the equations to find the values V π(s).

3. Value Iteration Write the second iteration of value iteration, i.e.
starting by initializing V (s) = maxa∈A r(s, a).

4. Policy Iteration Write the first iteration of policy iteration, starting
with V π(s) = 0 for all s. (We could also initialize a policy, and do the
Evaluation step to get started.)

12

3 Kalman Filters (Bonus Material)

Now consider the following dynamical system model:

zt+1 = Φzt + εt

xt = Azt + γt

where z are the hidden variables and x are the observed measurements. Φ
and A are known constants, while ε and γ are random variables drawn from
the following normal distributions:

εt ∼ N (µε, σ
2
ε)

γt ∼ N (µγ , σ
2
γ)

This is called a (one-dimensional) linear Gaussian state-space model. It
is closely related to an HMM – try drawing out the graphical model! –
but here the hidden states and the observations are now continuous and
normally distributed. Linear Gaussian state-space models have convenient
mathematical properties and can be used to describe noisy measurements
of a moving object (e.g. missiles, rodents, hands), market fluctuations, etc.

The Kalman filter is an algorithm to perform filtering in linear Gaussian
state-space models, i.e. to find the distribution of zt given observations
x1, ..., xt. The distribution of zt |x1, ..., xs will be N (µt|s, σ

2
t|s). If we start

with µt−1|t−1 and σ2t−1|t−1, the algorithm tells us to

1. Define the distribution of zt |x1, ..., xt−1 by computing µt|t−1 and σ2t|t−1.
This is called the prediction step.

2. Define the distribution of zt |x1, ..., xt by computing µt|t and σ2t|t. This
is called the update step.

The Kalman filter alternates between prediction and update steps, assimi-
lating observations one at a time. It requires one forward pass through the
data, and is analogous to obtaining the α’s in an HMM.

13

