
CS 181 Spring 2021 Section 9
Topic Models, Factor Analysis, and PCA

1 Topic Models

Topic modeling is a form of mixture modeling commonly used in analyzing text corpora.
As this is a form of unsupervised learning, the goal is to extract a set of parameters from
our data that we can use to make inferences about it. In particular, in topic modeling,
we are interested in learning the topics that exist in a corpus - we will define this concept
more formally.

Like mixture models that we study in this course, we will describe topic modeling as
a generative model: one in which we assume our corpus is generated by some process.
Then, we will seek to use an estimation technique, like EM, to determine the parameters
of this model, and we can then interpret these parameters to understand the corpus.

We begin by describing the generative process by which a document i is generated. For
topic modeling, similar to K-means, we have to begin by picking the number of topics,
K, to look for. We define a topic φk to be a distribution over the words, so φk ∈ [0, 1]|W|,
whereW is the set of words. For each document, we have a document-topic distribution
θi ∈ [0, 1]K. This is one of the parameters we will find by estimation.

We now describe the data generation process:

1. Let α ∈ RK
+ and β ∈ R

|W|
+ .

2. For each document n = 1, . . . , M, sample a mixture over topics: θn ∼ Dir(α).

3. For each topic k = 1, . . . , K, sample a mixture over words in that topic: φk ∼ Dir(β).

4. For each word wn,j, first sample the topic zn,j ∼ Cat(θn), then sample the word
wn,j ∼ Cat(φzn,j

).

At a high level, a topic model is a mixture over mixtures: within a single document, Dn,
θn specifies a distribution over topics in that document, and for each topic, k, in that
document, φk specifies a distribution over words.

This process is summarized in the following plate diagram:
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Exercise 1. In class, we discussed the EM algorithm applied to topic models. Describe, at a
high level, how the EM algorithm for topic models can be viewed as alternating between two
optimizations. What are these two optimizations?

Solution. In EM, we alternate between the E step and M step. In the E step, we write the
posterior distribution, q of the latent variable given the data and our current estimates
of the parameters, and in the M-step we try to maximize (over our parameters) the ex-
pected complete-data log likelihood under q. The two steps alternate between first (E
step) finding a lower bound to the true log likelihood (i.e., by finding q and noting that
the complete-data log likelihood under q minus q’s entropy over the dataset (which is
constant w.r.t the parameters) lower bounds the true log likelihood) and then (M step)
choosing the parameters which maximize this lower bound.

In the case of topic models, we do the exact same thing. Specifically, for the nth docu-
ment, the posterior distributions qn,j (which we take the expectation of the complete-data
log likelihood with respect to in the M step), will be the posterior distributions of top-
ics given words and our current estimates of the parameters. We calculate these qn,j’s in
the E step as an optimization towards establishing a lower bound on the true log likeli-
hood, and then, in the M step, we optimize over the parameters θn, φk to maximize this
lower bound. Specifically, in the M step, we find parameters that maximize the expected
complete-data log likelihood under qn: Eqn [log p(W, Z)], where W and Z denote words
and topics, respectively (note that the expectation is taken over the unknown topics, Z).
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2 Factor Analysis

In factor analysis, we have the following generative process:

1. w ∼ N (0, IK)

2. For each n:

• zn ∼ N (0, IK)

• xn ∼ N (wTzn, σ2) for some variance σ2 > 0

In particular, the vector w and the variables zn are not observable.

Estimating w (without access to the z’s) and/or the distribution of the z’s (without access
to w) seems like a very difficult problem! However, suppose that we could see the la-
tent variables zn. Then finding w reduces to a linear regression problem (which we know
how to solve). Alternatively, noting that p(zn|xn, w) ∝ p(xn|zn, w) · p(zn), if we could see
the vector w, then we can write down the PDFs p(xn|zn, w) and p(zn) and thus can find
p(zn|xn, w) (i.e., since we have its unnormalized PDF and everything is Gaussian). We
can then solve for zn by returning the mode of this PDF.

Exercise 2. In the real-world setting where we don’t have access to the latent variables or w, de-
scribe how we can use the above ideas to alternate between optimizing w give the z’s and optimizing
the z’s given w. In particular, propose a Max-Max algorithm to do so.

Solution. First randomly initialize the matrix w. Then we simply alternate between doing
the two optimization procedures described above. Specifically, our Max-Max algorithm
does the following:

1. Randomly initialize w ∈ RD×K (i.e., by drawing it from N (0, IK))

2. Optimize the zn’s give w and the xn’s. That is, for each n, find the PDF of the distri-
bution p(zn|xn, w) as described above and choose zn to be the mode of this distribu-
tion.

3. Optimize w given the xn’s and zn’s. That is, choose w which minimizes ∑N
n=1(xn −

wTzn)2 by using the OLS estimator.

Note that this algorithm is very similar, in spirit, to Lloyd’s algorithm, which is also Max-
Max.
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3 Principal Component Analysis

3.1 Motivation

In many supervised learning problems, we try to find rich features that increase the ex-
pressivity of our model. In practice, this often involves using basis functions to transform
model input into a higher dimensional space (eg. given data x, using x and x2 as features,
or using features learned by a neural network).

However, sometimes we want to reduce the dimensionality of our data.

Exercise 3. Why would we want to reduce the dimensionality of our data? Can you think of
example cases?

Solution. There can be several reasons:

• Fewer features are easier to interpret: we might want to know why our model out-
puts a certain diagnosis, and only some of the patient record details will be relevant.

• Models with fewer features are easier to handle computationally.

• Our data might be arbitrarily high-dimensional because of noise, so we would like
to access the lower-dimensional signal from the data.

One method for dimensionality reduction through linear projections of the original
data is PCA. When reducing the dimensionality of our data from m to d where d < m,
PCA can be interpreted as minimizing the reconstruction loss of projecting data onto d
basis vectors, or as maximizing the variance in data that can be explained by d basis
vectors.

3.2 Finding the lower dimensional representation

To perform PCA, or project each data point x: (m× 1) to z: (d× 1),

1. Center the data by subtracting the mean of each feature from each data point. Steps
2 - 5 will be performed on the centered data X: (n×m).

2. Calculate the empirical covariance matrix:

S =
1
n
(

n

∑
i=1

xix>i ) =
1
n

X>X

3. Decide how many dimensions d out of the original m that we want to keep in the
final representation. For visualizations, often this will be d = 2 or d = 3.

4



4. Find the d largest eigenvalues of S. The m× 1 eigenvectors (u1, . . . , ud) correspond-
ing to these eigenvalues will be our lower-dimensional basis.

5. Thus, we reduce the dimensionality of a data point x by projecting it onto this basis
- we combine the eigenvectors into the m× d matrix U, and compute

〈u>1 x, u>2 x, . . . , u>d x, 0〉 = U>x = z

z is called the reconstruction coefficients where Uz is the reconstruction of x.
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Exercise 4. You are given the following data set:

x1 =

[
1
−1

]
, x2 =

[
1
2

]
, x3 =

[
−2
−1

]
You would like to use PCA to find a 1-dimensional representation of the data.

1. Plot the data set.

2. Compute the empirical covariance matrix S.

3. You find that S has eigenvector [−1 1]> with eigenvalue 1 and eigenvector [1 1]> with
eigenvalue 3. What is the (normalized) basis vector u1 of your 1-dimensional representa-
tion? Add the basis vector u1 to your plot.

4. Compute the coefficients z1, z2, z3. Add the lower-dimensional representations
z1u1, z2u1, z3u1 to your plot. Based on your plot, what is the relationship between ziu1
and xi with respect to the new basis?

5. Based on your plot, what would happen if you chose the unused eigenvector to be your basis
vector?

Solution. 1.

•

•

•

2.

S =
1
3

X>X =
1
3

 1 −1
1 2
−2 −1

>  1 −1
1 2
−2 −1

 =

[
2 1
1 2

]

3. We select the eigenvectors with the largest eigenvalues for our basis, so our ba-
sis will contain a scalar multiple of [1 1]>. Normalizing [1 1]> gives us that u1 =

[
√

2
2

√
2

2 ]>.
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•

•

•

u1

4.

z1 = x>1 u1 = 0, z2 = x>2 u1 =
3
√

2
2

, z3 = x>3 u1 = −3
√

2
2

The open circles in the plot represent the lower-dimensional representation:

•

•

•

◦

◦

◦

u1

ziu1 is the projection of xi onto the basis vector.

5. If we chose [−1 1]> to be the basis of our new representation, then the representation
would capture less of the variance in the data. For example, x2 and x3 would be
represented by the same point.
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Exercise 5. Suppose that our data are centered (i.e., have sample mean 0). Recall that in lecture,
we showed that, when optimizing over (semi)-orthogonal matrices U ∈ Rm×d (i.e., where UTU =
I) to minimize the reconstruction loss,

L(U) =
1
n

n

∑
i=1
||xi −UUTxi||22,

we found that Ud, the matrix whose first d columns are (in order) the top d eigenvectors of
the empirical covariance matrix S = 1

n XTX, will achieve the minimum (i.e., z = UTx is the
projection of x into d dimensions, and Uz is its reconstruction in Rm). In class, we showed this
for case when d = m− 1 by using Lagrange multipliers. Show this, in general, for d.

Hint: you may use the following theorem:

Theorem 1 (Courant-Fischer). Let A be a symmetric n× n matrix with eigenvalues λ1 ≤ · · · ≤
λn and corresponding eigenvectors v1, . . . , vn. Then

λ1 = min
||x||=1

xT Ax

λ2 = min
||x||=1,x⊥v1

xT Ax

...

λi = min
||x||=1,x⊥v1,x⊥v2,...,x⊥vi−1

xT Ax

...

λn = min
||x||=1,x⊥v1,x⊥v2,...,x⊥vn−1

xT Ax.

Solution. We proceed just as in class. Let Ũ ∈ Rm×m be an orthogonal matrix, and we will
let U be the matrix comprising Ũ’s first d columns. Letting Ũ(k) denote the kth column of
Ũ, the orthogonality of Ũ implies that the Ũ(k) form a basis in Rm so that, for each xi, we
can find zi ∈ Rm such that

xi =
m

∑
k=1

zi,kŨ(k).

The orthogonality of Ũ implies that ŨTxi = (zi,1, . . . , zi,m) and UTxi = (zi,1, . . . , zi,d).
Hence, we can write the reconstruction loss as

L(U) =
1
n

n

∑
i=1
||

m

∑
k=1

zi,kŨ(k) −
d

∑
k=1

Ũ(k)zi,k||22 =
1
n

n

∑
i=1
||

m

∑
k=1

zi,kU(k) −
d

∑
k=1

zi,kU(k)||22
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=
1
n

n

∑
i=1
||

m

∑
k=d+1

zi,kU(k)||22 =
1
n

n

∑
i=1

m

∑
k=d+1

z2
i,k =

1
n

n

∑
i=1

m

∑
k=d+1

(
Ũ(k)Txi

) (
xT

i Ũ(k)
)

=
m

∑
k=d+1

Ũ(k)T
(

1
n

XTX
)

Ũ(k) =
m

∑
k=d+1

Ũ(k)TΣŨ(k),

where Σ denotes the empirical covariance matrix.

Let u1, . . . , um denote the eigenvectors of Σ (ordered by increasing corresponding eigen-
value). When d+ 1 = m, there’s only one element in the sum, and since we know that Ũ is
orthogonal, we must have that ||Ũ(k)||2 = 1 and thus Courant-Fischer says that Ũ(k) = v1
will minimize. When d + 1 = m− 1, there will be two elements in the sum:

Ũ(m−1)TΣŨ(m−1) + Ũ(m)TΣŨ(m).

Consider solving this optimization problem by first picking Ũ(m) and then Ũ(m−1). Now,
we either choose Ũ(m) to be v1 or we do not. If we choose Ũ(m) = u1, the Courant-Fischer
implies that picking Ũ(m−1) = u2 will minimize. If we do not choose Ũ(m) to be u1, then
Courant-Fischer implies that picking Ũ(m−1) = u1 will minimize and that, if we did not
pick Ũ(m) to be u2, we could’ve achieved an even lower value more by picking it to be so.
Thus, in either case, we will take Ũ(m) and Ũ(m−1) to be u1 and u2.

Proceeding iteratively like this shows that we will chose Ũ(d+1), . . . , Ũ(m) to be v1, . . . , vm−d.
Now, note that these are the columns we exclude from the matrix Ũ when we construct U
(which will be the first d column of Ũ). Since Courant-Fischer implies that v1, . . . , vn are
orthogonal, taking U’s columns to be vm−d+1, . . . , vm (i.e., the top d eigenvectors) indeed
will minimize the reconstruction loss, as desired.
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