
CS 181 Spring 2021 Section 8
Mixture Models and Expectation Maximization

(EM)

1 Mixture Models

1.1 Review of notation

Vectors are denoted using bold letters. In the statement,

“Assume you have observed data {xn}N
n=1.”

This means there are some constant N distinct observations. Each observation xn is a
vector, where each component of the vector represents each feature.

When used to define distributions, the semicolon means that you can plug in the deter-
ministic value of the variable after the semicolon into your expression for the distribution.
Typically the variables that appear after the semicolon are unknown parameters for which
you have some fixed estimate of what they may be.

For example, say you are given that random variable x ∼ N(0, σ), where σ is unknown.
You believe that σ = 2. Then

p(x; σ) ∼ N(0, 2)

When reading mathematical expressions, pay close attention to which variables are ran-
dom (random variables can be observed or unobserved), and which variables are deterministic
constants.

1.2 Motivation

Textbook sections 9.1, 9.2.

A mixture model is a type of probabilistic model for unsupervised learning.

Suppose you have some observed data {xn}N
n=1.

Mixture models are used when you have reason to believe that each individual observa-
tion has a discrete latent variable zn that determines the data generating process. A latent
variable is some piece of data that is unknown, but influences the observed data.

Say there are K possible values for each zn, denoted {Ck}K
k=1 where each Ck is a one-hot

encoded vector of length K.

Consider the following data-generating process for each data point xn:



• Sample latent class zn from θ, the categorical distribution over {Ck}K
k=1 s.t.

p(z = Ck; θ) = θk. Call this sampled latent class CS.

• Given that zn = CS, sample xn from the distribution

p(x|z = CS; w)

This conditional distribution is a modeling assumption (which means we will give
it to you in this class), and is specified using unknown parameters w.

For example, we may assume that x ∼ p(x|z = Ck) = N (x; µk, Σk), where µk, Σk
are the unknown mean and covariance of the k-th cluster. (See Section 2.4 for more
about Gaussian mixture models!)

Example: Say you have a dataset containing weights from a random sample of animals
in a pet store. Each xn is the animal’s weight. The latent variables zn represent what
kind of animal is being weighed, so the possible values {C1, C2, . . . , CK} may represent
the categories cat, dog, bird, etc. In your model, you also use the assumption that p(x|z =
Ck; w) ∼ N(µk, σk).

Exercise 1. In this example, can you give an intuitive explanation of what vector θ represents?
What does it mean that p(x|z = Ck; w) ∼ N(µk, σk)?



2 Expectation Maximization

Textbook sections 9.3, 9.4.

Expectation maximization is a general technique for maximum-likelihood estimation used
primarily for models with latent variables. Here we will show how to use EM to train a
mixture model, but EM is also used for a variety of other models!

Consider a generative mixture model consisting of a latent variable z from a distribution
p(z; θ) and an observed variable x, such that we draw x from a distribution p(x|z; w).

We have 2 goals:

1. To compute the MLE for w and θ, i.e. the values of w, θ that maximize p(x; w, θ).

2. To estimate the latent variable zn corresponding to a particular xn, which in this case
means maximize the distribution p(zn|xn; w, θ).

Goal 2 is easy once we have an estimate of the MLE for w, θ, because we can apply Bayes’
rule:

p(z|x; w, θ) ∝ p(x|z; w, θ)p(z; w, θ)

p(z|x; w, θ) ∝ p(x|z; w)p(z; θ) (1)

2.1 Why EM?

The likelihood of the data can be written as

p(x; w, θ) = ∑
z∈Z

p(x, z; w, θ)

Unfortunately calculating the MLE is often computationally intractable, because the log-
likelihood is:

log p(x; w, θ) = log ∑
z∈Z

p(x, z; w, θ) (2)

There is no closed form for the MLE of the log-likelihood because it is the log of a sum of
expressions. We know the form of the model p(x, z; w, θ), but in general we cannot solve
for the (w, θ) which maximize the likelihood p(x; w, θ) in closed form.



2.2 The EM Algorithm

Since finding the MLE directly is difficult, we will use expectation maximization: an ap-
proximate iterative approach. The steps of the algorithm are:

1. Initialize w(0), θ(0) randomly.

2. (E-step) Use the parameters to predict the distribution q for each example. The vec-
tor qn represents how likely it is that the latent variable zn comes from each class,
given our current setting for the model parameters:

qn,k := p(zn = Ck|xn; w(t), θ(t)) ∝ p(xn|zn = Ck; w(t))p(zn = Ck; θ(t)) (3)

3. (M-step) Update parameters: Choose the value of w(t+1), θ(t+1) that maximizes the
expected complete data log likelihood (where the expectation is over the distribu-
tion calculated above):

w(t+1), θ(t+1) = argmax
w,θ

EZ|X

[
N

∑
n=1

log p(x, z; w, θ)

]
(4)

4. Go back to step 2 until the log-likelihood estimate in step 3 converges.

2.3 Example: Gaussian Mixture Modeling

Lecture 14 and textbook section 9.5.

Recall from lecture the following setup:

We have data xn ∈ RD and a latent variable zn (corresponding to the cluster that the
point is drawn from) such that x ∼ p(x|z = Ck) = N (x; µk, Σk), where µk, Σk are the
mean and covariance of the k-th cluster. The choice of cluster is drawn from a categorical
distribution with probabilities π ∈ [0, 1]K. We are able to observe the data xn and want to
find the cluster centers and their covariances.

The steps of EM inference applied to this problem are:

1. Randomly initialize π, {µk, Σk}K
k=1.

2. Next, calculate the new distribution of each zn:

qn,k = p(zn = Ck|xn) ∝ πkN (xn; µk, Σk) (5)

This is our new estimate of the distribution of zn given the data and our estimate
for π, {µk, Σk}k.



3. Find the expected complete data log-likelihood:

EZ|X [L] = EZ|X[
N

∑
n=1

ln(p(xn, zn; π, {µk, Σk}k))] (6)

=
N

∑
n=1

K

∑
k=1

qn,k ln πk + qn,k lnN (xn; µk, Σk) (7)

and then optimize it for each of the parameters π, {µk, Σk}K
k=1. However, we need

to be careful to remember constraints: since ∑k πk = 1, we must use Lagrange mul-
tipliers to optimize the parameters. We get the following update equations:

π
(t+1)
k =

∑N
n=1 qn,k

N
(8)

µ
(t+1)
k =

∑N
n=1 qn,kxn

∑N
n=1 qn,k

(9)

Σ
(t+1)
k =

∑N
n=1 qn,k(xn − µ

(t+1)
k )(xn − µ

(t+1)
k )>

∑N
n=1 qn,k

(10)

2.4 Example: Modeling Biased Coins with a Binomial Mixture Model

We’ve seen one case of mixtures of Gaussians, but we can consider mixtures of any dis-
tribution. In this example, we’ll take a look at EM for a binomial mixture model. To
get started, we consider a mixture of Bernoulli model, where xn ∼ p(xn|zn = Ck) =
Bern(xn; pk).

Consider a setup where we have 2 biased coins C1 and C2, where Pr(C1 = 1) = π1 and
Pr(C2 = 1) = π2.

Data points xn are generated by:

• First, flip another biased coin Cz.

• If Cz is heads, then xn is the outcome of flipping C1.

• Otherwise, if Cz is tails, then xn is the outcome of flipping C2.

We can visualize this setup with the following diagram:



We wish to do inference to learn the unknown parameters of the coins (π1, π2), but the
only data we’re given is the outcomes of the flips (the xn’s).1

Exercise 2. In this example, what is a reasonable choice for the latent variables zn?

To be consistent with Textbook Example 9.4.5, which uses the same model for the mixture
of multinomials, we’ll let xn be a one-hot vector s.t. xn,1 = 1 if the result of coin flip n
was heads; xn,2 = 1 otherwise. zn is a one-hot vector (of size 2) indicating which coin was
flipped to generate xn.

We’ll denote the vector of probabilities for Cz used to choose between coins as θ ∈ [0, 1]2,
where θ1 is the probability we’ll pick C1, and θ2 for C2. Finally, we’ll use π1, π2 ∈ [0, 1]2

to denote the biases for each coin, where π1 is the vector of probabilities for C1, etc. Our
model is a mixture of binomials where we have two binomials (coins 1 and 2), each with
2 outcomes (heads or tails). We let w := {θ, π}.

Now that we have the problem set up, let’s use expectation maximization to learn param-
eters w := {θ, π}!

1In fact, when we only get 1 coin flip per example, so that each xn is just a single head or tail, and
this is a mixture-of-Bernoulli model, we won’t be able to usefully identify the parameters. Consider the
case of trying to tell between two coins with π1 = 0.3 and π2 =0.7 and θ1 = θ2 = 0.5 and two coins with
π1 = π2 = 0.5 and θ1 = θ2 = 0.5. These two parameterizations put the same likelihood on any data
set. Still, the work we do in this context extends to the case where xn represents multiple coin tosses per
example and we have a mixture-of-Binomial model. There we can usefully estimate the parameters of a
mixture model. We get to this in Exercise 4.



First we note that we can calculate qn from w(t) by writing:

qn =

[
p(zn = C1|xn; w(t))

p(zn = C2|xn; w(t))

]
(11)

∝
[

p(xn|zn = C1; w(t))p(zn = C1; w(t))

p(xn|zn = C2; w(t))p(zn = C2; w(t))

]
(12)

∝
[
(π11)

xn,1(π12)
xn,2θ1

(π21)
xn,1(π22)

xn,2θ2

]
(13)

We also have the complete data log-likelihood:

log p(xn, zn; w) = log p(xn|zn; w)p(zn; w) (14)

= log
2

∏
k=1

(
θk

2

∏
j=1

π
xn,j
kj

)zn,k

(15)

= zn,1 (log θ1 + xn,1 log π11 + xn,2 log π12)

+ zn,2 (log θ2 + xn,1 log π21 + xn,2 log π22)

(16)

log p(X, Z; w) =
N

∑
n=1

log p(xn, zn; w) (17)

Now expand the expected complete data log-likelihood:

Lc = EZ|X;w

[
N

∑
n=1

log p(xn, zn; w)

]
(18)

= EZ|X;w

[
N

∑
n=1

log p(zn; w) + log p(xn|zn; w)

]
(19)

=
N

∑
n=1

EZ|X;w [log p(zn; w) + log p(xn|zn; w)] (20)

=
N

∑
n=1

K

∑
k=1

qn,k

(
log θk +

2

∑
j=1

xn,j log πkj

)
(21)

=
N

∑
n=1

qn,1 (log θ1 + xn,1 log π11 + xn,2 log π12) + qn,2 (log θ2 + xn,1 log π21 + xn,2 log π22)

(22)

Now we can use these derivations to do expectation maximization!:

1. Initialize w(0) randomly.

2. Use w(t) to calculate the vector of probabilities qn for the distribution of each zn (eq.
13).



3. Calculate the current expected likelihood using qn and w(t) (eq. 22).

This step is not strictly necessary for calculating updates, but can be helpful for a
variety of purposes, including debugging and testing convergence. Note that we
need both q and w(t) to get a value here.

4. Use q to calculate an updated set of parameters w(t+1) by maximizing the expected
likelihood as a function of w (eq. 22). Note that here we do not use w(t).

During optimization we need to enforce that ∑k θk = 1 and that ∑j πkj = 1, so that
the distributions parameterized by θ and π are valid.

In general, we can enforce this constraint using Lagrange multipliers. Here, in the
2-dimensional case, we don’t need to use Lagrangian methods and can instead sub-
stitute θ2 = 1− θ1 and πk2 = 1− πk1:

Lc =
N

∑
n=1

qn,1 (log θ1 + xn,1 log π11 + xn,2 log(1− π11))

+ qn,2 (log(1− θ1) + xn,1 log π21 + xn,2 log(1− π21))

(23)

And then optimize w.r.t. θ1, π11, π21:

∂Lc

∂θ1
=

N

∑
n=1

(
qn,1

θ1
− qn,2

1− θ1

)
= 0 (24)

∂Lc

∂π11
=

N

∑
n=1

qn,1

(
xn,1

π11
− xn,2

1− π11

)
= 0 (25)

∂Lc

∂π21
=

N

∑
n=1

qn,2

(
xn,1

π21
− xn,2

1− π21

)
= 0 (26)

From here we can solve for the optimal value of w (i.e. θ1, π11, π22), and set w(t+1) =
argmaxw EZ|X;wLc.

Note: Above we show the derivation of all steps of the algorithm, but once you know the
closed form expression for w(t+1), the steps of the algorithm are really just initialization,
calculate the distribution qn from w(t), and then calculate w(t+1) from q. All the difficult
work is in deriving the update equations.

In more complicated models, the optimal w(t+1) may not have a closed form solution; in
these cases, instead we can do gradient descent to calculate the optimal value.



Exercise 3. Derive the closed form updates for θ(t), π(t) from the steps above.

Once we have an estimate for the MLE w, we can use it to do prediction of hidden states
for a new incoming coin flip, using step 2 from above. So, given a new coin flip, we can
predict whether it came from the first or the second coin.

Our model may not be very good, since in particular it is impossible to tell the difference
between having one coin chosen with high probability with π1 = 0.5 (and another picked
almost never with π2 = 0.1) and two equally likely coins with biases 0.4 and 0.6. In this
case, as discussed above, with only one observation for each coin we cannot successfully
estimate the parameters of the mixture model. This problem is due to the data setup: we
need a mixture of binomials, with multiple observations per coin.

Exercise 4. Consider the following data generation process: the setup is the same as above, but
instead of flipping the chosen coin once, we flip it 10 times before choosing a new coin.

1. Find an appropriate choice of latent variables zn and calculate the distribution of zn given
the data xn,j (where n iterates over each set of 10 coin flips, and j ∈ [1, 10]) and an estimate
for θ.

2. Find the expression for the expected complete data log-likelihood

3. Find the closed form update equations for θ(t), and compare them to the result from Exercise
3.
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