
CS 181 Spring 2020 Section 7: Clustering

1 Motivation

We now move onto unsupervised learning, where the objective is to learn the structure
of unlabeled data. In other words, we are looking for groups, or clusters among the data.
Clustering algorithms are useful not only for finding groups in data, but also to extract
features of the data that summarize the most important information about the data in a
compressed way.

2 Setup

For most clustering algorithms, we need some kind of a metric to specify the notion of
”distance” between the data points. If, for example, the points x and x’ live in some
Euclidean space Rm, then the natural choice of such metric is the l2 distance:

||x− x’|| =
√

n

∑
i=1

(xi − x′i)
2

Now that the metric is well-defined, the next thing we need to do is to decide how many
groups we want. Sometimes you know the ideal number of groups in advance (e.g. clus-
tering the 26 letters in the alphabet). Other times, you need to decide if you’d like a more
compressed representation with more information loss by having the number of groups
small, or a less compressed representation with less information loss by having the num-
ber of groups large.

Suppose our data set is {xi}n
i=1, then our objective is to find the ideal assignment of the

data set to the clusters, by assigning to each of the n data points, a binary responsibility
vector ri, which is all zeros except one component, which corresponds to the assigned
cluster.

3 K-Means Algorithm

The idea is to represent each cluster by the point in data space that is the average of
the data assigned to it. For some choice of K and random initialization of clusters, the
K-Means Algorithm (also called Lloyd’s algorithm) is:

Repeat until convergence (none of the responsibility vectors change):

1. For each data point, update its responsibility vector by assigning it to the cluster
with the closest mean.

2. For each cluster, {µk}K
k=1, update its mean to be the mean of the data points currently

assigned to that cluster.

3.1 Derivation

We begin by defining a loss function that the K-Means Algorithm minimizes via coordi-
nate descent:

L({ri}n
i=1, {µk}

K
k=1) =

n

∑
i=1

K

∑
k=1

rik||xi − µk||
2

First, we want to choose ri that minimizes the loss, holding all else constant. This is when
we assign data points to the clusters with means closest to them:

rik =

{
1 if k = argmink′ ||xi − µk′ ||
0 otherwise

This is the first step of each iteration of the K-means algorithm!

Second, we want to choose µk that minimizes the loss, holding all else constant. For a
given k, the squared loss is:

L(µk) =
n

∑
i=1

rik||xi − µk||
2

=
n

∑
i=1

rik(xi − µk)
T(xi − µk)

Taking the derivative and setting it to zero,

∂L(µk)

∂µk
= −2

n

∑
i=1

rik(xi − µk) = 0

µk =
∑n

i=1 rikxi

∑n
i=1 rik

This is the second step of each iteration of the K-means algorithm!

3.2 Number of Clusters

There is not an especially well justified method to choose the number of clusters when
using K-means. One approach is to plot K vs the objective criterion, and look for a “knee”
or “kink” where progress slows down.

An advanced method is to use the “gap statistic”. But this is out of scope for the course.

3.3 Notes

Lloyd’s algorithm finds a locally optimal solution. Finding the globally optimal is NP-
hard. A common strategy is to use random restarts. More recently, an algorithm called
K-Means++ has enjoyed popular usage as an alternative to random initialization. This is
out of scope for the course, but the basic idea is to randomly select some of the data to be
the first cluster centers. This is done by iteratively adding cluster centers, sampling them
in proportion to the squared distance of each example from its nearest cluster center. Thus
K-Means++ tends to favor points that are distant from the existing centers and produce a
more diverse set of centers.

It is generally a good idea to standardize the data to account for unsatisfying result due
to dimension mismatch. Lastly, when for the metric we are using for the given data set,
a ”mean” does not make sense, we might instead use a K-Medoids Algorithm. This
algorithm requires the cluster centers to be a data point in the data set.

3.4 Exercise: K-Means (Di Cook)

Use K-means to cluster these examples in R2, looking for K = 2 clusters. Suppose that
points A and C are randomly selected as the initial means.

x1

x2

•

•

•

•

•

◦ A

◦ B

◦ C

◦ D

◦ E

Point x1 x2
A 1 1
B 1 0
C 0 2
D 2 4
E 3 5

3.5 Exercise: Convergence of K-Means (Bishop 9.1)

Consider Lloyd’s algorithm for finding a K-Means clustering data, i.e., minimizing

L({ri}n
i=1, {µk}

K
k=1) =

n

∑
i=1

K

∑
k=1

rik||xi − µk||.

Show that as a consequence of there being a finite number of possible assignments for the
set of responsibilities rik, and that for each such assignment there is a unique optimum
for the means {µk}K

k=1, the K-Means algorithm must converge after a finite number of
iterations.

4 Hierarchical Agglomerative Clustering

Hierarchical clustering constructs a tree over the data, where the leaves are individual
data items, while the root is a single cluster that contains all of the data. When drawing
the dendrogram, for the clustering to be valid, the distances between the two groups
being merged should be monotonically increasing. The algorithm is as follows:

1. Start with n clusters, one for each data point.

2. Measure the distance between clusters. This will require an inter-cluster distance
measurement that we will define shortly.

3. Merge the two ‘closest’ clusters together, reducing the number of clusters by 1.
Record the distance between these two merged clusters.

4. Repeat step 2 until we’re left with only a single cluster.

The main decision in using HAC is what the distance criterion should be between groups.

4.1 The Min-Linkage Criterion

For two groups indexed by i and i′, the idea is to merge groups based on the shortest
distance over all possible pairs:

DISTmin({xi}n
i=1, {xi′}n′

i′=1) = min
i,i′
||xi − xi′ ||.

4.2 The Max-Linkage Criterion

For two groups indexed by i and i′, the idea is to merge groups based on the largest
distance over all possible pairs:

DISTmax({xi}n
i=1, {xi′}n′

i′=1) = max
i,i′
||xi − xi′ ||

4.3 The Average-Linkage Criterion

For two groups indexed by i and i′, the idea is to average over all possible pairs between
the groups:

DISTavg({xi}n
i=1, {xi′}n′

i′=1) =
1

nn′
n

∑
i=1

n′

∑
i′=1
||xi − xi′ ||

4.4 The Centroid-Linkage Criterion

For two groups indexed by i and i′, the idea is to look at the difference between the
groups’ centroids:

DISTcent({xi}n
i=1, {xi′}n′

i′=1) = ||
(

1
n

n

∑
i=1

xi

)
−
(

1
n′

n′

∑
i′=1

xi′

)
||

4.5 Exercise: K-means and HAC

What are three important differences between K-means and HAC?

4.6 Exercise: Min-Linkage and Max-Linkage Criterion

Assume the following examples lie in R. Each example is initially in its own cluster.

x1◦
1
◦
2

◦
4
◦
5

◦
9

◦
11

◦
16
◦
17

{1}{2}{4}{5}{9}{11}{16}{17}

1. Using the Min-Linkage Criterion for the HAC Algorithm, what is the clustering
sequence? Draw the dendrogram.

2. Using the Max-Linkage Criterion for the HAC Algorithm, what is the clustering
sequence? Draw the dendrogram.

4.7 Exercise: Clustering Complexity

What is the “big-O” complexity of HAC? What is the “big-O” complexity of K-means?
Compare these.

4.8 Exercise: Scaling to Large Dimensions

Explain the ‘curse of dimensionality’ and how it is related to HAC.

	Motivation
	Setup
	K-Means Algorithm
	Derivation
	Number of Clusters
	Notes
	Exercise: K-Means (Di Cook)
	Exercise: Convergence of K-Means (Bishop 9.1)

	Hierarchical Agglomerative Clustering
	The Min-Linkage Criterion
	The Max-Linkage Criterion
	The Average-Linkage Criterion
	The Centroid-Linkage Criterion
	Exercise: K-means and HAC
	Exercise: Min-Linkage and Max-Linkage Criterion
	Exercise: Clustering Complexity
	Exercise: Scaling to Large Dimensions

