
CS 181 Spring 2021 Section 6: SVM Dual + Kernels
Solution

1 SVM Review

Support Vector Machines (SVMs) learn a decision boundary for binary clas-
sification problems using weight vector w and bias w0. For some point x,
the boundary is defined by:

w>x + w0 = 0

Given a setting of w, w0, we make a prediction on x by computing the
discriminant function:

h(x,w, w0) = w>x + w0

and classify x as y = 1 if h > 0 and y = −1 otherwise. How good is our
SVM? Of all the ways to cleanly separate the two classes when possible, we
should pick a boundary that is furthest away from the closest points to the
boundary! The signed orthogonal distance of x from boundary:

r(x) =
w>x + w0

||w||

When points are classified correctly, this is negative for points i with yi = −1
and positive for those with yi = 1. Then margin of the model is the smallest
(over datapoints) unsigned distance. Multiply with yi to get rid of signs:

margin(w, w0) = min
i
yir(xi) = min

i

yi(w
>x + w0)

||w||
(want this to be large)

The SVM objective is to maximize the margin (which itself is defined as a
min over points!)! The 1

||w|| term can come out of the mini since it doesn’t
depend on i. The objective to maximize is:

max
w,w0

1

||w||
min
i
yi

[
w>xi + w0

]
In this hard-margin formulation (soft-margin out of scope for these notes),
if the data is truly linearly separable than the margin satisfies:

margin(w, w0) = min
i
yir(xi) > 0.
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Assuming data is separable, then the margin is some positive number. We
can rescale w, w0 so that this positive margin is specifically 1 or greater
without changing the orientation of the boundary. Then the boundary sat-
isfies:

margin(w, w0) = min
i
yir(xi) > 1

Let’s re-write the objective to make this constraint explicit (don’t need to
know how to justify to these re-writes, but see optimization theory if inter-
ested e.g. Stanford prof Boyd’s videos on YouTube):

max
w,w0

1

||w||
s.t. ∀i, yi(w>xi + w0) ≥ 1

where s.t. stands for “such that” and ∀i means “for all i”. A different-looking
objective with the same solution is (w in numerator instead of denom):

min
w,w0

1

2
||w||2 s.t. ∀i, yi(w>xi + w0) ≥ 1

We will shortly see why the min-rewrite is useful. With either of the last
two objectives, we say they are “quadratic problems with linear constraints”
which means they can be solved easily!

2 Dual Formulation of SVMs

We will now show an alternate view on the SVM problem. It will reveal an
algorithm that look something analogous to KNN for regression. This new
way of looking at SVMs will highlight some convenient ways of dealing with
high-dimensional data! We left off with this loss function with constraints:

min
w,w0

1

2
||w||2 s.t. ∀i, yi(w>xi + w0) ≥ 1

We use an idea called the Lagrangian (see optimization theory) to re-write
this constrained objective so that some of the constraints end up in the
main function to be optimized. We introduce lagrange multipliers ai for
each constraint (we have one for every datapoint) similarly to how you used

λ in HW2 to write
∑

k πk = 1 as λ
(∑

k πk − 1
)

min
w,w0

[
max
ai

(
1

2
w>w −

∑
i

ai

[
yi(w

>xi + w0)− 1
])]

s.t. ai ≥ 0
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where we also used that ||w||2 = w>w. Having changed the max to a
min in the previous section and then applying the Lagrangian trick, we
are left with a “min-max” problem that is quadratic with linear constraints.
Beautifully/interestingly, some optimization theory tells us this can (finally)
be re-written as:

max
ai

∑
i

ai −
1

2

∑
i

∑
j

aiajyiyj(x
>
i xj) s.t. ai ≥ 0,

∑
i

aiyi = 0

This has no w or w0! Just a constrained optimization problem in terms of
the ai. We call the set of points {xi|ai > 0}. the support vectors since
they contribute to the objective value at its optimum.

How do we predict without w, w0? Hidden in the last step that removed
w, w0 from the objective was the condition that w =

∑
i aiyixi. Hidden

also was a condition that tells us to find any i with ai > 0 and to set
w0 = yiw

>xi. For a concise explanation see the cs181 SVM 2 lecture recap
or David Sontag’s MIT notes. Then our discriminant can be written as

h(x, w, w0) = w>x + w0

=⇒ h(x, a, w0) =
∑
i

aiyi(x
>
i x) + w0

That is, to predict, we take dot products of the test point x with the dataset
support vectors i.e. the set of xi with ai > 0. Qualitatively, this is like
KNN: the complexity of prediction depends on the data rather than a fixed
parameter vector. However, when the number of support vectors is small
relative to the data dimension, this is cheap!

3 Basis Functions, Higher Dimensions, and Ker-
nels

Suppose the data were not separable as-is but were separable using some
basis φ. Lets just replace any x with φ(x) in the final objective:

max
ai

∑
i

ai −
1

2

∑
i

∑
j

aiajyiyj

(
φ(xi)

>φ(xj)
)

s.t. ai ≥ 0,
∑
i

aiyi = 0

and in the discriminant function:

h(x, a, w0) =
∑
i

aiyi

(
φ(xi)

>φ(x)
)

+ w0
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Suppose we needed to use a fairly high-dimensional basis function to achieve
separability e.g. mapping to all powers up to 100. Well, notice that we don’t
explicitly need the values of each φ(xi) or φ(x) but we only need to know
the result of the dot product of basis vectors on pairs. Then, we can directly
define the kernel function for two vectors x, z

K(x, z) = φ(x)>φ(z)

We can pick K such that we can compute it without ever computing an
individual φ(x). For example, let’s take

K(x, z) = (x>z)3

Example: Poly Kernels Lets consider x ∈ R2 and see how we would rep-
resent this as a basis dot product. Write K(x, z) = (x>z)3 = (x1z1 +x2z2)

3

as a dot-product φ(x)>φ(z). How is φ() defined?

(x>z)3 = (x1z1 + x2z2)
3

= (x1z1 + x2z2)(x1z1 + x2z2)(x1z1 + x2z2)

=
(
x21z

2
1 + 2x1z1x2z2 + x22z

2
2

)
(x1z1 + x2z2)

= x21z
2
1(x1z1 + x2z2) + 2x1z1x2z2(x1z1 + x2z2) + x22z

2
2(x1z1 + x2z2)

= x31z
3
1 + x32z

3
23x21z

2
1x2z2 + 3x22z

2
2x1z1

=
(
x31, x

3
2, 3x

2
1x2, 3x

2
2x1

)>(
z31 , z

3
2 , 3z

2
1z2, 3z

2
2z1

)
which implies the basis φ(x) = [x31, x

3
2, 3x

2
1x2, 3x

2
2x1]. But we only picked

x ∈ R2 and a degree 3 basis. More generally if the data dimension is D and
degree is q we have O(Dq) terms! But if we just compute the function K we
don’t first need to map to these high-dimensional bases. Put another way,
we can pick functions K that imply the use of very high-dim bases!

3.1 What’s a valid kernel?

When training SVMs, we begin by computing the kernel matrix K, over
our training data {x1, . . . ,xn}. The kernel matrix K ∈ Rn×n, defined as
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Ki,j = K(xi,xj), expresses the kernel function applied between all pairs of
training points.

Mercer’s theorem tells us that any function K that yields a positive
semi-definite kernel matrix forms a valid kernel, that is, corresponds
to a matrix of dot-products under some basis φ. Recall that a positive
semi-definite matrix K requires z>Kz ≥ 0, ∀ z ∈ Rn. Therefore instead of
using an explicit basis, we can build kernel functions directly that fulfill this
property.

Example: Scaling to make a new kernel Suppose K is a valid kernel.
Show that Knew(x,x′) = cK(x,x′) for c > 0 is also a valid kernel. You can
either show the positive semi-definite property or explicitly construct the
basis.

We have the kernel matrix Knew = cK. We need v>Knewv = cv>Kv ≥ 0,
which we know to be true because K is positive semi-definite and c > 0.
Alternatively, take φnew(x) =

√
c φ(x).

4 Some more exercises

Exercise: Large Bases with Exp
Suppose x ∈ R and suppose we pick K(x, x′) = exp(xx′) where exp(z) = ez.
If we re-write K(x, x′) = φ(x)>φ(x′) then how is the implied φ defined for
this choice of K and what is the dimension of φ(x)? hint: use

ez = lim
i→∞

1 + z + . . .+
zi

i!

Solution:
Using the Taylor series expansion, we see that

K(x, x′) = exp(xx′) = lim
i→∞

(
1 + xx′ + · · ·+ (xx′)i

i!

)
So by definition of dot product

K(x, x′) =

[
1, x, . . . ,

xi

i!
, . . .

]>[
1, x′, . . . ,

(x′)i

i!
, . . .

]
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So therefore

φ(x) =

[
1, x, . . . ,

xi√
i!
, . . .

]>
.

This choice of K implies infinite-dimensional bases! That is, there is no
finite-dimensional vector φ such that K(x, x′) = φ(x)>φ(x′)!

Exercise: String Kernels
Let s and s′ be strings. To measure how similar s and s′ are, consider
the “string kernel” K(s, s′), which returns the total number of distinct
substrings (of any length) that s and s′ have in common. For example,
K(’aa’, ’aab’) = 3 because the substrings ’’, ’a’, and ’aa’ are in com-
mon.

1. Compute K(’aza’, ’zaz’).

2. What is the number of possible substrings of length 1, 2, and 3 in
strings that are composed from a 26-letter alphabet?

3. Suppose we wanted to project a string into a higher-dimensional space
such that we could represent via a 0 or 1 each of all possible substrings
of length ≤ 3. How many dimensions would we need?

4. How does directly defining this string kernel help over computing the
basis functions? Is it possible to compute the kernel itself efficiently?

Solution:

1. K(’aza’, ’zaz’) = 5 because substrings ’’, ’a’, ’z’, ’az’, ’za’ are
in common.

2. There are 261 = 26 possible substrings of length 1, 262 = 676 of length
2, and 263 = 17576 of length 3.

3. Then 26 + 676 + 17576 = 18278 features are required to represent all
substrings of length ≤ 3.

4. In computing the kernel, we don’t have to compute a feature repre-
sentation for the data points (i.e. we don’t have to find the pres-
ence/absence of each possible substring for s and s′). Instead we can
just write a program to find only the substrings that are in common.
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We avoid having to use costly representations to calculate the similar-
ity between strings. This is the advantage of using kernel functions.

Exercise: Composing Kernels
A particularly nice corollary of Mercer’s theorem is that it allows us to
build more expressive kernels by composition. We already saw that positive
scaling yields a new kernel. Now, use Mercer’s theorem and the definition of
a kernel matrix to prove that the following compositions are valid kernels,
assuming K(1) and K(2) are valid kernels.

[Note: It suffices to show that a kernel is valid either by finding a particular
φ(x) that produces it, or by showing that the kernel matrix is positive semi-
definite. Recall that a positive semi-definite matrix K requires z>Kz ≥
0, ∀ z ∈ Rn.]

1. K(x,x′) = K(1)(x,x′) +K(2)(x,x′)

2. K(x,x′) = f(x)K(1)(x,x′) f(x′) where f : Rm to R

3. K(x,x′) = K(1)(x,x′)K(2)(x,x′)

[Hint: Use the property that for any φ(x), K(x,x′) = φ(x)>φ(x′)
forms a positive semi-definite kernel matrix. ]

4. K(x,x′) = exp
(
K(1)(x,x′)

)
5. Finally use this analysis and previous identities to prove the validity

of the Gaussian kernel:

K(x,x′) = exp

(
−||x− x′||22

2σ2

)
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Solution: In these solutions, let φ(i)(x) and K(i) denote the underlying
basis function and kernel matrix for kernel K(i), respectively.

1. We have the kernel matrix K = K(1) + K(2). We need

v>Kv = v>(K(1) + K(2))v = v>K(1)v + v>K(2)v ≥ 0,

which we know to be true because K(1),K(2) are positive semi-definite.

Alternatively, take φ(x) =
[
φ
(1)
1 (x), . . . , φ

(1)
d (x), φ

(2)
1 (x), . . . , φ

(2)
d (x)

]>
,

the concatenation of φ(1)(x),φ(2)(x)

2. Take φ(x) = f(x)φ(1)(x).

3. Take φ(x) =
[
φ
(1)
1 (x)φ

(2)
1 (x), . . . , φ

(1)
1 (x)φ

(2)
d (x), φ

(1)
2 (x)φ

(2)
1 (x), . . . , φ

(1)
d (x)φ

(2)
d (x)

]>
,

the flattened vector for outer product φ(1)(x)⊗φ(2)(x). The order of
terms does not matter.

4. (a) We have

K(x,x′) = exp
(
K(1)(x,x′)

)
= exp

(
φ(1)(x)>φ(1)(x′)

)
=

d∏
i=1

exp
(
φ
(1)
i (x)φ

(1)
i (x′)

)
We recognize the multiplicand to be a valid kernelThen, recognize
that a product of valid kernels is a valid kernel. Alternatively,
write

K(x,x′) = exp(K(1)(x,x′)) = lim
i→∞

(
1 + φ(1)(x)>φ(1)(x′) + · · ·+ (φ(1)(x)>φ(1)(x′))i

i!

)
which can also be recognized to be valid given our previous con-
clusions.

5. • K0(x,x
′) = x>x′ is a valid kernel by definition of the kernel (it

is the inner product of x and x′).

• Thus K1(x,x
′) = exp(2x>x′) is also a valid kernel

• Note thatK(x,x′) = exp(−x>x) exp(2x>x′) exp(−x′>x′) = f(x)K1f(x′),
where f(x) = exp(−x>x).

• We proved K(x,x′) is a kernel.

Note: a common mistake is saying exp(−x>x) is a kernel. It is not.
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