
CS 181 Spring 2021 Section 3 Notes
(Model Selection)

1 Model Selection

1.1 Bias-Variance Decomposition

Bias-variance decomposition is a way of understanding how different sources of error (bias and
variance) can affect the final performance of a model. A tradeoff between bias and variance is
often made when selecting models to use.

1.2 Exercise: Bias-Variance Decomposition

Decompose the generalization error (or mean squared error) into the sum of squared bias (system-
atic error), variance (sensitivity of prediction), and noise (irreducible error) by following the steps
below. You will find the following notation useful:

• fD: The trained model, fD : X 7→ R.
• D: The data, a random variable sampled from some distribution D ∼ Fn.
• x: A new input.
• y: The true result of input x. Conditioned on x, y is a r.v. (there may be noise involved.)
• y: The true conditional mean, y = Ey|x[y|x].
• f(x): The predicted mean from the model, f(x) = ED[fD(x)].
• ED(·) is the expectation with respect to the data (for a quantity that depends on the data,

and over the data’s distribution). Ey|x(·) is the expectation of a quantity over the conditional
distribution of y given x.

1. Start with the equation for the mean squared error or generalization error:

ED, y|x[(y − fD(x))2]

and use the linearity of expectation to derive an equation of the form:

Ey|x[(y − y)2]︸ ︷︷ ︸
noise

+ED[(y − fD(x))2]︸ ︷︷ ︸
bias+var

+ ??? (1)

where the ??? denotes a third term. What is this term? Hint: add and subtract y.

2. Show that this third term is equal to 0 (Hint: take advantage of the fact that y and fD(x) do
not depend on y|x).

3. The first term in (1) is the noise. We therefore want to decompose the second term into the
bias and variance. Again, using the linearity of expectation, re-write the second term in
equation (1) in the form:



(y − f(x))2︸ ︷︷ ︸
bias squared

+ED[(f(x)− fD(x))2]︸ ︷︷ ︸
variance

+2ED,y|x[(y − f(x))(f(x)− fD(x))] (2)

Show that the third term is equal to 0.

4. Plug the results of part 3 back into (1) to show that we have decomposed the error into noise,
bias, and variance.

Solution:

1. Follow the hint:

ED,y|x[(y − fD(x))2]
= ED,y|x[(y − y + y − fD(x))2]
= Ey|x[(y − y)2]︸ ︷︷ ︸

noise

+ED[(y − fD(x))2]︸ ︷︷ ︸
bias+var

+2ED,y|x[(y − y)(y − fD(x))]︸ ︷︷ ︸
0

2. Using the hint to apply the law of iterated expectations (also known as Adam’s law):

2ED[(y − fD(x)) · Ey|x[(y − y)|x]] = 2ED[(y − fD(x)) · 0] = 0.

3. Following a similar procedure as in part 1:

ED[(y − fD(x))2]
= ED[(y − f(x) + f(x)− fD(x))2]
= (y − f(x))2︸ ︷︷ ︸

bias squared

+ED[(f(x)− fD(x))2]︸ ︷︷ ︸
variance

+2ED[(y − f(x))(f(x)− fD(x))]︸ ︷︷ ︸
0

where the third term is 0 by:

2(y − f(x))ED[f(x)− fD(x)] = 2(y − f(x))(0) = 0.

4. Substituting (2) back into (1), we have:

ED,y|x[(y − fD(x))2]
= Ey|x[(y − y)2] + (y − f(x))2 + ED[(f(x)− fD(x))2]
= noise(x) + bias2(f(x)) + VarD(fD(x)).

Considering the expectation over x (you are not asked to do this in the exercises), the gener-
alization error is:

Ex

[
noise(x) + bias2(f(x)) + VarD(fD(x))

]



1.3 Exercise: Bias-Variance Tradeoff in Estimating an Unknown Parameter

We consider a very simple example where the data is a univariate Gaussian, with xi ∼ N (µ, 1)
with known variance but unknown mean. In this case, we want to estimate the true mean µ - and
we are dealing with only one variable, i.e. the xi’s. A very simple hypothesis, for example, is the
sample mean

x =
1

n

n∑
i=1

xi

for data (x1, . . . , xn) ∈ Rn. Calculate the bias and variance for the following two hypotheses:
1. Estimate 1: Use the same mean of data D.
2. Estimate 2: Use the constant hypothesis, 0.

Solution:

1. The bias is µ− ED[x] = µ− ED[(1/n)
∑
xi] = 0. The variance is:

V ar(x) = V ar

(
x1 + ...+ xn

n

)
=

1

n2
V ar (x1 + ...+ xn)

=
1

n2
· nV ar(x1)

= σ2/n

a standard result for the variance of sample mean on n i.i.d. examples.

2. Assuming the mean is 0 is an arbitrary choice, so the bias equals µ, the expected difference
between the estimator and the true value. However, this prediction is constant, so the vari-
ance of our prediction is 0.

1.4 Limitations

How can you test the ”variance” of your estimate/model (i.e., how it would vary if you estimated
it a bunch of times on a bunch of datasets drawn from the same distribution), when in practice
you only have access to one dataset?

We can solve this problem by ”bootstrapping” (i.e. sampling a bunch of ”synthetic” datasets from
the data we have, with replacement). But there are easier ways to solve this problem.

1.5 Validation Set

A validation set contains data that are separate from our training set used to fit the regression. Here
is a sample process:

1. Separate our full dataset into a training set and validation set (say in a 90/10 split).

2. Train your models with different parameters on the training set. Each time, check the per-
formance on the validation set.



3. This gives you an optimal value for the parameter.

1.6 Cross Validation

Cross validation is a more sophisticated technique for obtaining validation losses.

1. In k-fold cross validation, we split our data into k equal chunks.

2. For each chunk, we set it to be the validation set and use the rest of the k−1 chunks together
as the training data to fit our model.

3. Then, we obtain a validation loss on our current chunk.

4. Averaging loss over the k chunks gives us a final validation loss.

Now, we have an improved way of computing validation losses by averaging. This reduces the
variance in the resulting validation loss - since we’ve used every data point in doing so!

See this notebook for an interactive demo of how cross validation could be used.

1.7 Ensemble Methods

Ensemble methods take advantage of multiple models to obtain better predictive accuracy than
with a single model alone. The two most common types are bagging and boosting.

1.7.1 Bootstrap aggregating (Bagging)

• In bagging, we fit each individual model on a random sample of the training set.

• To predict data in the test set, we either use an average of the predictions from the individual
models (for regression) or take the majority vote (for classification).

• This tends to lower variance without changing bias, since it’s an average of models!

• Example: Random forest, which is an average of predictions from decision trees!

1.7.2 Boosting

• In boosting, we train the individual models sequentially. After training the ith model on
a sample of the training set, we train the (i + 1)th model on a new sample based on the
performance of the ith model.

• Thus, examples classified incorrectly in the previous step receive higher weights in the new
sample, encouraging the new model to focus on those examples.

• During testing, we take a weighted average or weighted majority vote of the models’ pre-
dictions based on their respective training accuracies on their reweighted training data (i.e.
higher models have larger weights).

• Example: The Adaboost algorithm is a common example.

https://colab.research.google.com/drive/1MjheKoDqF-O7xamhXi6TR4CGgpGCqczW?usp=sharing


1.8 Exercise: Model Selection Using Bias and Variance

You have a dataset about n dogs. Your want to model weight of a dog (dependent var.) using
age (independent var.). You fit and evaluate three models using the same train-test split, a linear
model, a quadratic model, and a cubic model. Below is a table of the train and test accuracies.

Linear Quadratic Cubic
Train 0.60 0.82 0.93
Test 0.62 0.73 0.54

1. For each model, would you choose to regularize? What would regularization do?
2. For each of the three models, what would be the effect of adding more data and why?
3. How would each of these models perform on a freshly drawn set of dogs? Assume that the

draws across both data sets are i.i.d. (i.e. using same breeds, etc. in both data sets).
4. Based on these results, which model do you think is the most appropriate for this data?

1. The linear model is already fitting quite well as seen by the fact that the test performance
exceeds the train performance, so no regularization is needed. In fact, regularization would
probably only serve to reduce its test performance, making the model even weaker than it
is.

The quadratic and cubic models both appear to do worse on the test than the train set, sug-
gesting that they are both overfit and would therefore benefit from regularization. If we
regularize, the training accuracies in these cases will likely decrease, but this is not a prob-
lem since the test accuracies should consequently increase.

2. The linear model will see no significant difference in performance with more data, since it is
already not overfit. In fact, it might be somewhat underfit.

The quadratic model, as mentioned before, is overfit and would likely benefit from more
data, since the addition of data tends to reduce overfitting.

Similarly, the cubic model appears even more overfit than the quadratic model, in which
case data augmentation will be beneficial in fitting a more representative model.

3. Since both the quadratic and cubic models are overfit, there is likely to be high variance and
therefore substantially different performance results if they are applied to another data set.
It will be difficult to say which of the quadratic and cubic models will perform better, but it
can be fair to presume that the cubic model will have higher variance due to its more extreme
overfitting.

The linear model, on the other hand, might actually be somewhat underfit, and therefore be
quite biased. Based on what we know of bias-variance relationships, that suggests that the
linear model will have little variance across data sets and therefore perform similarly.

4. The quadratic model almost certainly looks better than the linear model, due to the higher
test performance, even if the quadratic model is overfit. However, it is unlikely but still pos-
sible that the cubic model will outperform the quadratic model once proper regularization
techniques are applied.



2 Regularization

2.1 Linear Regression

Suppose we have data {(xi, yi)}Ni=1, with xi, yi ∈ R, and we want to fit polynomial basis func-
tions:

φ(x)> = [φ1(x) = 1, φ2(x) = x, . . . , φd+1(x) = xd]

f(x;w) = w>φ(x)

That is, we fit a degree d polynomial. With a small dataset and too high of a d, we get overfitting.
Obviously, this will generalize poorly to new data points. How can we solve this problem?

2.2 Penalized Loss Function

Recall that the standard linear regression problem, known as ordinary least squares (OLS), uses the
following loss function (which is just the mean squared error):

LOLS(D) =MSE =

N∑
i=1

(yi − f(xi;w))2

Regularization refers to the general practice of modifying the model-fitting process to avoid over-
fitting. Linear models are typically regularized by adding a penalization term to the loss function.
The penalization term is simply any function R of the weights w scaled by a penalization factor λ.
The loss then becomes:

Lreg(D) =
N∑
i=1

(yi − f(xi;w))2 + λR(w)

There are some common choices for R(w) that will be discussed. They frequently leverage the
idea of a vector norm, where ||w||p represents the Lp-norm of the vector w for p ≥ 1:

||w||p =

(∑
d

|wd|p
)1/p

2.3 LASSO Regression

One common choice for a penalization term is simply R(w) = ||w||. This is just the L1-norm of
the weights vector, which quite naively means that the penalization term here is just the sum of
the magnitudes of all the weights for the model. This form of regularized regression is known
as LASSO (Least Absolute Shrinkage and Selection Operator) regression. The full modified loss is
then:

LLASSO(D) =
N∑
i=1

(yi − f(xi;w))2 + λ||w||

There are some notable properties of LASSO regression. One main disadvantage is that it does not
have a closed-form solution, meaning that it cannot be analytically solved. Therefore, it needs to
be numerically solved through an iterative process, which can be much slower.



Concept Question: Why do you think LASSO has no closed-form solution? Try to
solve for it using the same process as for the OLS solution; what goes wrong?

However, it does have the benefit, as the name suggests, that it is good for variable selection, mean-
ing that coefficients for some variables (ones that have low predictive power) might be “shrunk”
directly to zero.

2.4 Ridge Regression

Another solution to overfitting linear regression is through ridge regression, which minimizes a
modified least squares loss function:

L(D) =

N∑
i=1

(yi − f(xi;w))2 +
λ

2
||w||2

Ridge regression is used to regularize a model, making it simpler and allowing it to generalize
better to new data. Indeed, the extra term penalizes overly large weights in w, leading to smaller
coefficients for a “flatter” polynomial:

Unlike LASSO, ridge regression has a closed form solution, which makes the solution much more
computationally efficient. While it does not shrink coefficients to zero, it has other intuitive prop-
erties, such as connection to a Normal prior. The analytical solution is:

wridge = (XTX+ λI)−1XTy

The above expression can be compared to the OLS solution. The only additional term is λI, which
looks like a “ridge” of λ values (hence the name ridge regression). This also helps avoid problems
with singular data.

Concept Question: Solve for the closed form solution to ridge regression.

Source: https://www.quora.com/Why-does-Lasso-regression-lead-to-sparse-solutions

The above diagram is a visual comparison between the LASSO and ridge regularizations and may
help you understand how they each behave when shrinking coefficients.

2.5 Exercise: Ridge Regression

Suppose we have some data matrix X ∈ Rn×m and targets y ∈ Rn. Suppose the data are orthog-
onal*, i.e. satisfies X>X = I. Show that if ŵ is the solution to linear regression, and ŵridge is the
solution to ridge regression, then

ŵridge =
1

1 + λ
ŵ

This explicitly illustrates the phenomenon of weight shrinkage.

* Orthogonal data is a very special case in which the inner product between any two distinct features is zero.
Normally we expect features to be correlated. But it is used to gain this clean illustration of the effect of ridge regression.

https://www.quora.com/Why-does-Lasso-regression-lead-to-sparse-solutions


Recall that the linear regression solution is

ŵ = (X>X)−1X>y

and we have that the ridge regression solution is

ŵridge = (X>X+ λI)−1X>y

If X>X = I, we see that

ŵ = X>y

ŵridge =
1

1 + λ
X>y

hence giving us the result.

2.6 Exercise: Lasso Regularization from Lagrange Multipliers

Show that minimization of the unregularized sum-of-squares error function given by

E(w) =
1

2

N∑
n=1

(tn −wTφ(xn))
2,

subject to the constraint

D∑
d=1

|wd| ≤ η,

is equivalent to minimizing the regularized error function

1

2

N∑
n=1

(tn −wTφ(xn))
2 +

λ

2

D∑
d=1

|wd|

Rewrite the constraint as

D∑
d=1

|wd| − η ≤ 0

We get the Lagrangian function (using λ
2 for convenience):

L(w, λ) =
1

2

N∑
n=1

(tn −wTφ(xn))
2 +

λ

2

D∑
d=1

(|wd| − η)

Technically, we have X = [v1, . . . ,vm] where v1, . . . ,vm are n dimensional, orthogonal column vectors.
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