(CS181 Section 0

Due: Never

The goal of these section notes is to cover some material that is mostly review for CS 181. There are a
number of problems to test your understanding and readiness for the course. (*) indicates challenge
sections or challenge problems. Do not worry if you cannot solve these problems as the corresponding
material will not be necessary as prerequisites.

1 Linear Algebra

A great reference for this material is Sheldon Axler’s |Linear Algebra Done Right, which can be found on
Hollis.

1.1 Scalars and Vectors

A scalar is a single element of the real numbers. a € R is a scalar. We usually denote scalars using lowercase
letters, such as a or x.

A vector of n dimensions is an ordered collection of n coordinates, where each coordinate is a scalar. An
n-dimensional vector v with real coordinates is an element of R™. Equivalently, the coordinates specify as
single point in an n-dimensional space, just like you may have seen with cartesian coordiates where (1, 3)
might denote a point. By default, vectors will be columns and their transposes will be rows. We write
vectors in bold lowercase, and the vector itself as a column of scalars:

This is the default format. Sometimes vectors will be in row form and their symbols may not be bolded. If
you find this confusing at first please reach out to one of the course staff.
Vectors may be scaled. ax scales each element of x by scalar a so that

axq
ax9
axX =

ATy,

Vectors of the same dimension may be added coordinate-wise:

1 Y1 1+ Y1

T2 Y2 T2 + Y2
x+ty=|.|+]|.|= .

Tn Yn Tn + Yn

Vectors have both a direction and a magnitude. The magnitude of a vector (or its length) is typically the
vector’s L norm, which can be computed as the square root of the sum of the squares of the coordinates:
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https://hollis.harvard.edu/primo-explore/fulldisplay?docid=TN_cdi_askewsholts_vlebooks_9783319110806&context=PC&vid=HVD2&lang=en_US&search_scope=everything&adaptor=primo_central_multiple_fe&tab=everything&query=any,contains,linear%20algebra%20done%20right&offset=0

[Ixll2 =

n

E 2
x5

i=1

There are a number of other vector norms such as the Ly, Ly, Lo norms:
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Definition 1.1 (Norm). We say that || - || is a norm if it satisfies the following properties:
e Triangle inequality: ||x +y|| < [|x]| + [y]|-
e ||ax| = |a| - ||x|| for a scalar a.

e ||x|| =0 if and only if x = 0.

Problem 1

(*) Challenge: Show that the Ly norms are indeed norms for p € [1,00) and p = co. We will mostly
work with Ly and Lo so it is recommended you understand these two norms.

The direction of a vector can be represented using a vector of magnitude one (according to some norm):

/||
. X w2 /|||
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We often use the “hat” symbol (i.e. X) to denote that a vector has magnitude one, or is a unit vector.
An important product between vectors of the same dimension is the inner product (also called dot product
or scalar product). For two vectors u and v, this is defined as

n
u-v = E U;V;.
i=1

Tt is also written as (u,v). We can introduce cosine similarity through the formula

u-v

cos(f) = ——,
©) = Tl TR

where 6 is the angle between u and v. The cosine similarity ranges from -1 (exactly opposite) to 1 (exactly
the same), with 0 indicating orthogonal vectors. If v is a unit vector then u - v gives us the magnitude of
the projection of u onto the direction of v. Thus it makes sense that a vector u dotted with itself equals the
square of its L2 norm: (u,u) = ||ul|3.

The outer product between two vectors is the matrix W = [wj;]; j<» whose entries are w;; = u;v;.
When the two vectors are dimension n and m, respectively, their outer product is an n x m matrix.



1.2 Linear Independence

A set of vectors {vy, ..., v, } is linearly independent if and only if the equation ¢; vy +cava+, ..., +¢p v, =0
for scalars ¢y, ..., ¢, can only be satisfied by setting ci, ..., ¢, all to 0. Intuitively, it means that none of the
vectors (or linear combinations of them) are parallel.

1.3 Spaces and Subspaces

A vector space V is a collection of vectors that follow several axioms regarding the properties of scaling
and addition described above, and most importantly:

e 0cV
e closure under scaling: V v € V and scalars a € R, av € V
e closure under addition: Vu,ve V,u+vey

The most intuitive vector space and the one most relevant to the course is R™, the space of n-dimensional
vectors. R? is the 2-dimensional Cartesian plane for example.

Now we define a basis for a vector space. First, we define a linear combination of a list of vectors
(v1,...,Vm,) as any quantity of the form:

a1v1 + ...+ amv,y, where ai,...,a, € R (1)
The span of (v1,...,vy,) is the set of all linear combinations of (v1,...,v;,). Moreover, if the span of
(v1,...,Vm) is equal to the vector space V, then we say that (vy,...,v,;,) spans V.

Then a basis of a vector space V is a list of vectors in V' that both are linearly independent and also span
V. For the space R", the most intuitive basis, which we call the standard basis is the list:

((1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)) (2)

The set of vectors {vy, ..., v, } form an orthonormal basis for V if they are all unit vectors (normal) and if
(vi,vj) =0,Y i # j (orthogonal) where (-,-) is the inner product. The standard basis that we defined above
is also an orthonormal basis.

The dimension of a vector space V is the number of vectors of any basis of V. Since every basis of V
has the same number of vectors, this is uniquely defined.

Let S be a vector space. If S C V, then § is a subspace of V. Intuitively, a subspace is a lower-dimensional
space in a higher-dimensional space—think about the plane defined by the z and y axis in a 3-dimensional
z,y and z space.

1.4 Scalar, Vector, and Subspace Projection

For vectors u,v € ¥V and v # 0, the scalar projection a of u onto v is computed as:

R

vl

Think about this as the size of u along the direction of v. Using scalar projection a, the vector projection
ull of u onto v can be computed as:
v (u,v)

I — =
u' =a- =
||"|| <'7‘>

V.



Think about this as scaling by a the unit vector in the direction of v. For a projection onto v, we can then
write u = ull + ut, completing u with this new component u'. In particular, (u“,uﬂ =0, and u® is
orthogonal to v. It follows that u = ull if and only if u is a scaled multiple of v.

Problem 2
Verify that (ull,u') = 0 and that u = ul if and only if u is a scaled multiple of v.

1.4.1 Subspace Projections

Finally, it is possible to project a vector u in a vector space V onto a subspace S of V. If the set of vectors
{s1,...,8,,} form an orthonormal basis for S, then the subspace projection ull of u onto S = span(sy, ...,s,,)
can be expressed as the sum of the projections of u onto each element of the basis of S:

m <u s >
I — AP
ul = s
; <Si7Sz‘> ’
This has the properties that the vector u~ = u — ull is orthogonal to all vectors in S, that u = ull if and
only if u € S, and that ull is the closest vector in S to w: [Ju—v|| > [[u—ul|,v v#ul,veSs.

Problem 3 (Distance between a hyperplane and a point)

(*) Challenge: Suppose we have a hyperplane defined by w’x +wo = 0. In this problem, we will derive
the formula for the distance between the hyperplane and a point x’.

(a) Imagine two points x; and x2 on this hyperplane. Show that w is orthogonal to the difference
X1 — X2. Why does this imply that w is orthogonal to the hyperplane?

(b) Now, suppose we wish to find the distance d between a point x” and the our hyperplane. Let x,
be the projection of x’ onto the hyperplane. Find an expression for x’ in terms of d, w, and wy.
(Hint: use the fact from (a) that w is perpendicular to the hyperplane.)

(c) Using your expression from (b), show that the distance d is the following:

T !
d:WX-i-’wo (3)

[[wll

1.5 Matrices

A matrix is a rectangular array of scalars. Primarily, an n x m matrix A € R™*™ is used to describe a
linear transformation from m to n dimensions, where the matrix is an operator. To see this, note that
the result of multiplying an n X m matrix and an m x 1 vector is an n x 1 vector. A;; is the scalar found at
the 7" row and j** column. We write matrices in bold uppercase.

A typical linear transformation looks like y = Ax where x € R™,y € R", A € R"*™. The transformation
A is linear because A(Aju+ \av) = A\jAu + A2 Av for scalars A\; and As.

1.6 Matrix Multiplication Properties

AB is a valid matrix product if A is p X ¢ and B is ¢ x 7, or the left matrix has same number of columns
q as the right matrix has rows. The standard matrix product is defined as follow:

q
(AB)” = ailblj + a¢2b2j 4+ 4 aiqbqj = Zaikbkj; ’L = 1, ey P andj = 1, ey T
k=1



In other words, (AB);; is the dot product of the ith row of A with the jth column of B.
Properties of matrix multiplication:

e Generally not commutative: AB # BA

e Left/Right Distributive over addition: A(B+ C) = AB + AC. (A +B)C = AC+ BC.
e For some scalar A\: A(AB) = (AA)B = (AB)A = A(B)).

e Transpose of product: (AB)T =BTAT

Problem 4

Given the matrix X and the vectors y and z below:

_ [T11 12 (U N 4
X= (le $22) Y= (y2> ‘= (22) )
(a) Expand Xy + z
(b) Expand yTXy

1.7 Rank, Determinant, Inverse

The column rank of a matrix A is the dimension of the vector space spanned by its column vectors, i.e.,
the number of linearly independent columns. The row rank is the dimension of the space spanned by its
row vectors. A fundamental result in linear algebra is that the column rank and the row rank are always
equal and this number is the rank of a matrix. If A is n x m, then rank(A4) < min(n,m).

A matrix is full rank if its rank equals the largest possible for a matrix with the same dimensions, i.e.
min(n, m). For a square matrix, full rank requires all its column (or row) vectors to be linearly independent.

The determinant det(A) is defined for a square matrix A and is a scalar quantity with various uses. Its
computation differs for square matrices of different sizes. An n-by-n square matrix may have an inverse.
There is a matrix inverse if and only if A has a non-zero determinant. A square matrix that is not invertible
is called singular. det(A) is also the product of the eigenvalues of A (see Section. We will denote the
determinant with single bars, e.g. det(X) = |X|. Do not confuse |X| with double bars ||X||, which typically
denote a norm.

A few properties of the determinant (it’s okay if you understand but can’t recall from memory the rest of
this section):

e The determinant of a diagonal matrix is the product of its diagonal values, and in particular the
determinant of the identity matrix Iis 1: |I| = 1.

e For an n X n-matrix A and a scalar value ¢ we have |cA| = ¢"|A|.

e The determinant factors over products: |[AB| = |A| - |B|.

The inverse A~! of matrix operator A “undoes” A much like multiplying by % undoes multiplying by z.
We have AA~1 = A='A = 1. A~ exists if and only if |[A| # 0. In general, matrix inversion is a complicated
operation, but special cases that are easy to work with come up in the machine learning literature. Often
analytical solutions to systems depend on the existence of the inverse of a matrix.



Problem 5
1

For an invertible matrix A show that [A~!| = TA]

(*) The Moore-Penrose pseudoinverse A™ of A is a generalization of the inverse to non-square matrices,
where AATA = A. Matrix AA™T may not be the general identity matrix but maps all column vectors of A
to themselves.

1.8 Matrix Properties

e AT is the transpose of A and has AJ-TZ- = A;;. This is just like flipping the two dimensions of your
matrix.

e A is symmetric if A;; = Aj;. That is, A = AT. Only square matrices can be symmetric.

e (*) A is said to be orthogonal if its rows and its columns are orthogonal unit vectors. Consequence:
ATA = AAT =1 where I is the identity matrix (ones on the main diagonal and zeros elsewhere).
For an orthogonal matrix A we have AT = A~

e Diagonal matrices have non-zero values on the main diagonal and zeros elsewhere. Diagonal matrices
are easy to take powers of because you just take the powers of the diagonal entries. Under certain
conditions a matrix may be diagonalized, see eigen-decomposition and SVD below.

e A matrix is upper-triangular if the only non-zero values are on the diagonal or above (top right
of matrix). A matrix is lower-triangular if the only non-zero values are on the diagonal or below
(bottom left of matrix).

1.9 Eigen-Everything

Recall that a matrix A can be thought of as an operator. Each square matrix A has some set of vectors
x € R" in its domain that are simply mapped to a scaled version of the vector in the codomain. The matrix
preserves the direction of these vectors: Ax = Ax for some scalar value \. In this case, A is an eigenvalue
of A and x is a corresponding eigenvector. Eigenvectors can also be seen as the invariant directions of the
matrix.

Problem 6

An eigenspace of a matrix A is an eigenvalue A and the set Uy = {v | Av = Av}. Show that U, is a
vector subspace of the span of the columns of A.

Eigen-decomposition: Let A be an n x n full-rank matrix that has n linearly independent eigenvectors
{q;}"_,. In this case, A can be factored into A = QAQ~! where Q is n x n and has eigenvector q; for its
it" column. A is a diagonal matrix whose elements are the corresponding eigenvalues: A;; = A;. This is the
eigen-decomposition of the matrix and we say the matrix has been diagonalized. If a matrix A can be
eigen-decomposed and none of its eigenvalues are 0, then A is nonsingular (i.e., it is invertible) and its
inverse is given by A~ = QA~'Q ! with A;;l = )\i
Singular Value Decomposition is a useful generalization of eigen-decomposition to rectangular matrices.
Let A be an m x n matrix. Then A can be factored into ULV T = UXV~! where

e U is m x m and orthogonal. The columns of U are called the left-singular vectors of A.

e X is an m X n diagonal matrix with non-negative real entries. The diagonal values o; of 3 are known
as the singular values of A. These are also the square roots of the eigenvalues of AT A.

e Vis an n x n orthogonal matrix. The columns of V are called the right-singular vectors of A.



1.10 Positive Definiteness

The symmetric matrix A € R™*™ is said to be positive definite if, for every non-zero vector x € R", it
satisfies the property

x Ax >0

and positive semi-definite if it satisfies

x' Ax > 0.

Problem 7
(*) Show that positive definite matrices have all eigenvalues > 0 and positive semi-definite matrices
have all eigenvalues > 0.

2 Calculus

Khan Academy has good reference material for calculus| and multivariable calculus. For matrix calculus see
The Matriz Cookbook| by Petersen and Pedersen, specifically sections 2.4, 2.6, and 2.7.

2.1 Differentiation

You should be familiar with single-variable differentiation, including properties like:

Chain rule: - f(g(x)) = f(g(x))g' (2
Product rule: %f(m)g(x) = f'(z)g(x) + f(z)g' (x)
Linearity: %(af(x) +bg(x)) = af'(x) + bg'(z)
for scalars a and b. In multivariable calculus, a function may have some number of inputs (say n) and some
number of outputs (say m). In general, there is a partial derivative for every input-output pair. This is

called the Jacobian. The j** column of the Jacobian is made up of the partial derivatives of fj (the gth
output value of f) with respect to all input elements, rows ¢ = 1 to n.

0he) | Ofm(x)
df(x) | ™ o
dx 0N . Ofm(x)
Oy, Oxy,

If f is scalar-valued (has only 1 output), its derivative is a column vector we call the gradient vector,
written as V f:

9f (%)
o7(x)
d f(x)
9f(x)
Oy

The gradient vector points in the direction of steepest ascent in f(x). This is useful for optimization.


https://www.khanacademy.org/math/calculus-all-old
https://www.khanacademy.org/math/multivariable-calculus
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

The Hessian matrix is like the Jacobian but with second-order derivatives. There are many interesting
optimization topics related to the Hessian.

The most important vector or matrix derivatives that we will use in CS 181 can be found on p. 8-10 of |The
Matriz Cookbook| by Petersen and Pedersen. We’ve reproduced a few important derivatives here:

dxTa da'x

dx  dx
da'Xb T
X =ab
d Ty T
a' X'b _ba'
dX
da'Xa da'X"a anT
X ~—  dX
dX — BY kkx
dX;

*** B is a matrix with all zeros except for a 1 in the 7, j entry.

Have you ever wondered how to differentiate the norm of a matrix? The eigenvalues? For more, see |The
Matriz Cookbook.

2.2 Optimization

Local Extrema: Recall that the local extrema of a single-variable function can be found by setting its

derivative to 0. The same is true here, using the condition dfi(::) = 0. However, this equation is often

intractable. We can also search for local minima numerically using gradient-based methods.

Gradient Descent (we will learn this in class): We start with an initial guess at at a useful value for a
parameter w: wg. Then at each step ¢ we update our guess by going in the direction of greatest descent of
a loss function (opposite the direction of the gradient vector):

df (w)

Wit1 = Wi — nidw

where 77 > 0 is the step size. We stop updating w; when the value of the gradient is close to 0.

Lagrange Multipliers: This technique is used to optimize a function f(x) given some constraint g(x) = 0.
First construct what is called the Lagrangian function L(x, \):

L(x,A) = f(x) + Ag(x)
Then, set the derivative of L with respect to both x and A equal to 0:

oL
If x is d-dimensional, this will give you a system of d 4+ 1 equations. In this way, you can solve analytically
for x to find the optimal value of f(x) subject to the constraint g(x). As with unconstrained optimization,
this too is intractable and gradient descent is used to make progress.


https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Problem 8

Solve the following vector/matrix calculus problems.

(a) Let f(x) =x'x. Find Vf(x).

(b) Let f(w) = (1 —w'x)% Find Vf(w) where the gradient is taken with respect to w.

(c) Let f(x) = g(h(x)), where g : R — R and h : R — R are both differentiable. Find V f(x).
)

(d) Let A be a symmetric n-by-n matrix. If f(x) = 1x7Ax + w’x, find Vf(x).

3 Probability Theory

Harvard’s Statistics 110 is the most relevant source of material. A public version of the course can be found
here.

3.1 Probability

Probability provides a measure of how likely it is that some event will occur or that some proposition will
be true. In order to define probability, we define the sample space € as the set of events that represent
all possible outcomes of a particular process, or experiment. For example, if you are flipping a coin, the
sample space consists of two outcomes: S = {H,T}. We then represent the “probability of getting a head”
as P(H) = % Formally, we define P(A) as a function that maps events to probability values between 0 and
1. (You don’t need to know the formal mathematical underpinnings behind probability theory for CS 181,
but if you’re interested, see optional Section 3.2 below.)

Below are some of the fundamental concepts and formulas in probability that will be important for this
course:

e Conditional probability: P(A|B) represents the probability of A given B. In other words, what is
the probability that A is true given that we already know that B is true.

For example, an unconditional probability might be the probability of arriving late to work today,
P(late to work). A conditional probability would be the probability of arriving late to work, given
that you know that traffic is bad, P(late to work|bad traffic). Intuitively, think of conditioning as
updating your probabilities based on what you already know.

P(A|B) = 13(;1(;)3)

e Independence: Events A and B are independent if knowing whether A occurred gives no information
about whether B occurred. If A and B are independent, then all the following hold:

P(AN B) = P(A)P(B)
P(A|B) = P(A)
P(B|A) = P(B)

e Probability of intersection or union: Note that P(A N B) means the probability of A and B, and


https://projects.iq.harvard.edu/stat110/home

P(A U B) means the probability of A or B:

P(ANB) = P(A)P(B|A) if A and B not independent
P(ANnB)=P(A)P(B) if A and B independent
P(AUB)=P(A)+ P(B)— P(ANnB) if A and B not disjoint
P(AuUB)=P(A)+ P(B) if A and B disjoint

¢ Bayes Rule: Fundamental rule for calculating conditional probabilities:

P(A|B) = P(B;f(lg(fl)
P(AIB,C) = P(Bﬁkg?g)(/qc)

e Law of Total Probability: Useful rule for calculating the probability of an event A in situations
where it’s easier to calculate probabilities conditioned on some other event.

In calculating P(A), we make some partition of the sample space By, Bs, Bs, ..., B, (i.e. the B; are
disjoint and their union is the entire sample space). Then we can write:

P(A) = ZH:P(AIBi)P(Bi) = P(A|B1)P(B1) + ... + P(A|Byn) P(By)

In the case where the partition is simply B and B¢, then:

P(A) = P(A|B)P(B) + P(A|B°)P(B°)

Problem 9 (Example 2.3.9 from the Stat 110 textbook)

A patient named Fred is tested for a disease called conditionitis, a medical condition that afflicts 1% of
the population. The test result is positive, i.e., the test claims that Fred has the disease. Let D be the
event that Fred has the disease and T' be the event that he tests positive.

Suppose that the test is 795% accurate.” What that means is P(T|D) = 0.95 and P(T¢|D¢) = 0.95.
Find the conditional probability that Fred has conditionitis, given his positive test result.

3.1.1 (*) Formal definition of probability

The axioms of probability are a special case of general measure theory. This section will introduce some of
that formalism, but this will not be necessary for CS181. In general, we will work with a probability space
(Q, F,P) where Q is the sample space (the set of all possible outcomes), F is a set of events (subsets of 2),
and P is a probability measure. {2 is an abstract set consisting of whatever we deem to be ‘outcomes’ (this
could be a set of numbers, environmental states such as the weather, or really anything). F is a o-algebra
on 2, which means it satisfies certain axioms:

e e Fand Qe F
e If Ac Fthen A°=Q\AeF
o If A1, Ay, ... € F then |J,, A, € F.

10



These axioms may seem arbitrary, but they are all quite intuitive to probability. Firstly, § € F says that
the event that nothing happens is in F and € F says that the event that something happens is in F.
The second condition tells us that if event A C € is in F then the opposite of A, which is everything but
Aie. A€ is also in F. If some event could happen then surely that event could not happen, which is the
same as the opposite of said event occurring. The third condition tells us that for a countable collection of
possible events Aq, As, ... the event Uzozl Ay, which is the logical equivalent of A; OR Ay OR Az OR ..., is
also possible.

Now we are left with our probability measure P : F — [0, 1] which is a function from our collection of events
to the interval [0,1]. We have P((}) = 0, which is to say that the probability of nothing happening is 0, and
P(Q2) = 1, which says that the probability of something happening is 1. P(A4) + P(2\ A) = 1, which means
that one of A or Q\ A will occur. P satisfies countable subadditivity:

(9=

and countable additivity for disjoint sets:

P(An)

M8

1

8

AZQAJZQVZ#j — ]P(

An> - i P(A,).

n

Problem 10
(*) Show that if A C B then P(A) < P(B). What does this mean?

Let’s give an explicit example of a probability space. Consider a fair flip of a coin, which lands on Heads
(H) or Tails (T) with equal probability. Then our set of outcomes is 2 = {H,T'}. What is our collection of

events? It is the power set of Q (the collection of all subsets of Q): F = 22 = {), {H},{T},{H,T}}. And
what is our probability measure? It is defined as follows:

o P(0) =0
o P{H}) =P({T}) =1/2
o P{H,T}) =1

Note: For brevity we generally drop the set brackets and write P(H) instead of P({H}).

3.2 Random Variables

A random variable is a variable whose value is determined randomly as the result of some kind of random
process or experiment. For example, suppose that for an experiment you flip a coin ten times. A random
variable is any outcome that results from this experiment. Random variables do not need to be numerical.
For example, they could represent the result of choosing a molecule according to some sample distribution
from a set of interesting molecules. Here are some examples of numerical random variables:

e X = the number of heads
e X = the number of tails

e X = the number of heads minus the number of tails

. X 1, if the 5th flip is heads
~ 10, if the 5th flip is tails

11



Remember that the value of a random variable X is unknown before we observe the outcome of the experi-
ment. Once we observe the experiment’s outcome (for example, we actually flip the coin ten times), we then
have an observation which we denote using z.

A random variable can be discrete or continuous. A discrete random variable X takes one of a finite set of
values in the sample space {2, each with a corresponding probability p(X = z) (or written px (z) or simply
p(z)), for event & € Q. p(z) is the probability mass function of X. We say that x ~ X (x is sampled
from X) when the value of x is picked in accordance with the distribution on X.

A continuous random variable can take on a continuous range of values. We use p(x) or px(z) for the
probability density function of a continuous random variable (f(x) is also common notation). For a
continuous r.v., it’s important to note that the probability of any particular value is zero (but the probability
of a range of values can be nonzero). It’s important to think of the function as assigning densities that behave
like relative probabilities rather than absolute masses. Among other things, the probability density function
(PDF) p(x) can be greater than 1. We can easily go between the probability density and probability using
integration:

3.2.1 Expectation

The expected value (or expectation, mean) of a numerical random variable can be thought of as the
“weighted average” of the possible outcomes of the random variable. For discrete random variables:

Eop@)[X] =D 2 p(x) Elg(X)] =Y g(x)p()
zeQ e

where g : 2 — R. Note that we often drop the subscript underneath the E. For a numerical, continuous
random variable:

B = [ apwir B0 = [ s

zEQ
The most important property of expected values is the linearity of expectation. For any two random
variables X and Y (regardless of independence)

ElaX +bY + ] = aE[X] 4 DE[Y] + c.
If X and Y are independent, then E[XY] = E[X]E[Y].

3.2.2 Variance

The variance of a numerical random variable is its expected squared deviation from its mean:
Var(X) = E[(X — E[X])?]
= E[X?] - (E[X])*
Variance is a measure of the spread of a random variable. Random variables with high variance are more

spread out. Consider two normal distributions with different variances. The distribution with low variance
is tall and skinny, and the distribution with high variance is shorter and wider.

Problem 11

An example of a discrete distribution X is the result from rolling a standard, fair 6-sided die.

(a) What is the set of outcomes Q7

(b) Calculate E(X) and Var(X)
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Problem 12
Verify that Var(aX + b) = a*Var(X).

3.2.3 Independence of random variables

Two random variables X, Y are said to be independent if p(z,y) = p(z)p(y). This tells us that knowing X
tells us nothing about Y and vice-versa. Independence is often denoted using the | symbol, where X | Y
implies X is independent of Y.

Problem 13
Show that if X and Y are independent then p(z|y) = p(x). Interpret this.

Definition 3.1 (Independent and Identically Distributed). We say that random variables Xi, Xs, ... are
independent and identically distributed (often abbreviated as ii.d. or iid) if X; ~, X (each X; is sampled
from the same distribution p) and X is independent of X; for ¢ # j.

3.2.4 Conditional Independence

Two random variables X,Y are said to be conditionally independent given another random variable Z if
p(z,y|z) = p(x|z)p(y|z). This tells us that if given Z, then knowing X tells us nothing about Y and
vice-versa (given Z, knowing Y tells us nothing about X).

Problem 14

Does independence imply conditional independence? Does conditional independence imply indepen-
dence?

3.2.5 Joint Distributions

The joint probability distribution of X = z and Y = y is written as p(z, y) or px vy (x,y). For independent
random variables X and Y, the joint distribution factors into the product p(z,y) = p(z)p(y). However, in
the more general case we must condition: p(x,y) = p(x)p(y|z) = p(y)p(z|y) (see next section). When you
have a joint distribution of two or more random variables, its a common situation to want the marginal
distribution of a single variable. For a pair of random variables X and Y, use the sum rule:

Discrete: p(z) = ZP(%Q)
yey

Continuous: p(z) :/ p(z,y)dy
yey

Think about the marginal distribution as that you would obtain by running an experiment, sampling
both r.v.s, but only recording the observations on one of them. This generalizes. For example, with four
r.v.s then the marginal distribution on two of them is attained by “summing out” over the other two.

3.2.6 Conditional Distributions

Receiving information about the value of a random variable Y can change the distribution of another variable
X. For example, if you know the 49ers won the Super Bowl (!) and their opponents scored 20 points, then
you know that the 49ers scored at least 21 points. We write the conditional random variable as X|Y, and the
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conditional distribution as p(z|y). Manipulating the definition for the joint probability of random variables
that may be dependent, we get:

_ p(,y)

As mentioned above, when dealing with the joint probability of several dependent variables, we can factor
into chains of conditional probabilities with the product rule:

p(x,y,2) = p(z)p(y|z)p(z|z, y)
p(y)p(zly)p(z|z,y)
p(Z) (z]2)p(ylz, 2)

This is a very useful tool. Optional: Seehttp://colah.github.io/posts/2015-09-Visual-Information/
for some interesting visualizations of conditional probability and information theory.

3.2.7 Bayes’ Theorem for Conditional Distributions

This is a central theorem that we will use repeatedly in this course, and is an extension of the product rule:

p(yl)p(z)

p(zly) = o)

Problem 15

Prove Bayes’ theorem.

(*) Since we are conditioning on y, then y is held constant, and that means p(y) is just a normalization
constant. As a result, we often write the above property as

p(xly) o< p(ylz)p(x)

where the symbol « can be interpreted as “is proportional to”.

3.2.8 Covariance

The covariance between two jointly distributed, numerical random variables X and Y with finite variances
is defined as the expected product of their deviations from their individual expected values. Intuitively, this
asks: are X and Y likely to tend above E[X] and E[Y] jointly (high covariance)? Or does X tend below E[X]
while Y tends above E[Y] and vise versa (low covariance)? To oversimplify, do X and Y tend to increase
and decrease together?

Cov(X,Y) = E[(X — E[X])(Y — E[Y])]

When considering data in n dimensions, compute the n X n covariance matrix (often denoted X), where
3,; = Cov(X;, X;) is the empirical covariance between the i'" and j'" features (“empirical” in the sense
that it is calculated from sample data).

Properties of covariance: (supposing X,Y, Z have mean 0 and finite variances)
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Symmetric: Cov(X,Y) = Cov(Y, X)
Positive Semi-definite: Cov(X,X) >0

Cov(X, X) =0 implies X always takes the same value, its mean
Bilinear: Cov(aX + bY, Z) = aCov(X, Z) + bCov(Y, 2Z)
e Triangle Inequality: |Cov(X,Y)| < 4/ Var(X)Var(Y)

Problem 16

(*) Prove these five properties. The last one is tough!

Problem 17
Show that for random variables X,Y that Var(X +Y) = Var(X) 4+ Var(Y) + 2Cov(X,Y).

Problem 18
(*) Show that for random variables X1, ..., X,, that

Var(Xy 4+ X,) = » Var(X;)+2 Y Cov(X;, X;).
i=1

1<i<j<n

Hint: Use induction and the problem above.

3.3 Conditional Expectation and Conditional Variance
E[X|Y = y] is the expected (or average) value of the random variable X given a particular observed value
of Y (such as the expected temperature, given no rain). This is the conditional expectation of X given
Y =y.
Similarly, we can define conditional variance as

Var(X[Y) = E[(X - E[X|Y])*|Y] = E[X?|Y] - E[X|Y]?
Adam’s law (law of total/iterated expectations) gives

E[X] = E[E[X]Y]]

Problem 19
(*) Prove Adam’s law. This is quite tough so feel free to look it up on Wikipedia if needed.

Eve’s Law (or law of total variance) is the analogous case for varianceﬂ

Var[X] = E[Var[X|Y]] + Var[E[X|Y]]

Problem 20

Prove Eve’s law using Adam’s law.

1 These two components are also the source of the term “Eve’s law”, from the initials EV VE for “expectation of variance”
and “variance of expectation”.
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3.4 Gaussians (Normal Distribution)

3.4.1 Univariate PDF

1 1
N(w;p,0%) = ﬁ exp (M(fﬂ - N)z)

The univariate Gaussian is often referred to as a bell curve. The ‘bell’ corresponding to the PDF above is

centered at the mean p and has width proportional to the variance 2.

Problem 21
Using the probability density function of X ~ A(0,1) show that X has mean 0 and variance 1.

Hint: The PDF is p(z) = \/% exp (—%x2). For the mean, you can reason about the properties of

the PDF itself to get the answer without integration techniques. For the variance, use integration by
parts and the fact that the PDF itself integrates to 1.

Problem 22

Solve the following problems:

(a) Let Z ~ N(0,1). Find a random variable in terms of Z that has the distribution N'(—2,4).

(b) (*) Show that in general, if X ~ N (u,02) then aX + b~ N(ap + b, a%0?).

Properties of Gaussians:
e If X,V are independent normals then X +Y ~ N (ux + py, 0% + 0%)

e Any PDF proportional to exp(az? + bz + ¢) must be a Gaussian PDF.

3.4.2 Multivariate PDF

Given dimension m, mean vector p € R™, and covariance matrix X € R™*™  we say that x is distributed
multivariate normal if its PDF is given by:

N %) = ot e (500 w5 -0 )

Note: there are many ways to write the multivariate normal PDF. You may notice the absence of m in the
coeflicient. This works because the 27 distributes nicely over X in the determinant.

3.5 Markov Chains

A sequence of random variables X1, Xo, ... is said to be a Markov chain if it satisfies the Markov property:
Xn+1 ‘le ceey Xn ~ Xn+1 |Xn7

i.e. that knowing the value of X,, tells you the same amount of information about X,,;;1 as knowing all of
X1,..., X, If the X;’s are a discrete distribution the Markov property can be written as:

P(Xn-‘rl - jn+1|Xn - jna ceey Xl = .]1) - P(Xn—i-l = jn+1|X7l = .]n)
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Problem 23

A simple random walk is defined by setting Xy, = 0 and letting X;11 = X; + R; where the R;’s are
independent variables taking value +1 or —1 with equal probability: P(R; = 1) = P(R; = —1) = 1/2.
Show that simple random walk is a Markov chain.

An m-state Markov chain consists of a Markov chain X7, ..., X,, for which X; € {1,...,m}, which is the set
of states. Don’t confuse the set of m states with the length of the chain. Such a Markov chain is typically
defined with a matrix of probabilities. Let p;; = P(Xp41 = j|X, = i) be the transition probability from
state 7 to state j. Note that p;; # pj; in general. The transition matriz defines the properties of the Markov
chain:

P11 P12 - Pim

P21 P22 - P2m
P= ) ) . .

Pm1  Pm2 e Pmm

A distribution on this Markov chain is a row vector m = (q1, ..., ¢,,) with ¢; > 0 and Y.~ | ¢; = 1 and where ¢;
represents the probability of being at state i. P represents the distribution after 1 sample from the Markov
chain and 7P represents the distribution after k samples from the Markov chain. If 7* P = 7* then we say
7" is a stationary distribution of Markov chain P.

Problem 24

Consider the following Markovian environment. The weather is either sunny (state 1) or rainy (state
2). If it’s sunny today it will be sunny tomorrow with probability 0.7 and if it’s rainy today it will be
rainy tomorrow with probability 0.5.

e What is the transition matrix P for this environment?
e What is the corresponding stationary distribution?

e Let’s say we start with the initial distribution (0.5 0.5) . What does the distribution look like
after 1 sample of the Markov chain? After 27 After 107 Please feel free to use a computer algebra
system like WolframAlpha. Do you see any similarities with the stationary distribution? Check
out the concept of the "limiting distribution” of a Markov chain if you’re interested.

3.6 Inference

We will not need too much inference as a prerequisite, but the more familiar you are with basic concepts
such as the likelihood function, the easier it will be to pick up the methods in CS 181. If you would like
to dig deeper take a look at Harvard’s Statistics 111. Some section notes from a previous iteration of the
course can be found here.

3.6.1 The Likelihood Function

Let Y be a probability distribution that is dependent on some set of parameters . The parameters may
be the result of using machine learning to try to model a distribution on data that has been observed. For
example, if you're familiar with logistic regression (and not to worry if not), the parameters of the logistic
regression. Write f(y|€) to denote the probability mass function if Y is discrete and the probability density
function if Y is continuous. Let D denote the data, a set of n, independent and identically distributed (i.i.d.)
samples y1,...,yn ~y Y. The likelihood function on data D is defined as

n

L(0; D) = f(y1, -, ynl0) = [ ] £ (wil0).

i=1
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Often times, to transform the product into a sum we take the log of the likelihood L(6), called the
log-likelihood 1(9):

0(6; D) = log L(6; D) = log (H f(yi|9)> = log f(yil6).
i=1 i=1
It is convenient to work with the log to the base e.

Problem 25
(*) Derive the likelihood and log-likelihood functions for i.i.d. samples y1, ..., yn ~ N (i, 02).

3.6.2 (*) Maximum Likelihood Estimation

What L(6; D) represents is a product of densities on elements of data D as a function of the parameters
#, where we think about parameters 6 as being selected through a machine learning procedure. Intuitively,
L(61; D) > L(62; D) implies that 6; is a better set of parameters than 02 for modeling data D. Maximizing
the likelihood will then produce the best set of parameters according to the data. This is referred to as
maximum likelihood estimation.

The mazimum likelihood estimate (MLE) is the set of parameters 6 that maximizes L(6; D) given data D (or
equivalently the set of parameters that maximizes £(8; D) since L(01; D) > L(02; D) <= £(01; D) > £(63; D)).
There is a rich theory underlying the MLE with rigorous convergence results and guarantees. We will not
investigate this theory here but there are many good references available online/ and this is part of what will
be covered in CS 181.

Problem 26
(*) Compute the MLE estimates for i.i.d. samples 41, ..., yn ~ N (, 02).

3.7 Bayesian Inference

In this course, we will use Bayesian inference. While thorough knowledge of Bayesian inference is not required
coming into the course, it will be helpful to have at least a general idea of the principles of Bayesian inference.

Suppose that we have a weighted coin which lands Heads with probability p, where we don’t know the value
of p. Our goal is to infer the value of p after observing n coin flips. In frequentist inference, p is treated as
a constant whose value we do not know, and therefore does not have a distribution. Therefore, statements
such as ”"the probability that p is greater than 0.5” are not logical since p does not have a distribution. It is
either greater than 0.5 or it isn’t.

In Bayesian inference, p is treated as a random variable and therefore has a distribution. In Bayesian in-
ference, the distribution of a random variable can represent our belief or uncertainty about that random
variable. We know that since p is a probability, it must have support [0, 1]. Thus, we might suppose initially
that p ~ Beta(a,b) This initial distribution we give to p is a prior distribution.

Suppose then we observe the value of X, the outcome of n coin flips, i.e. X ~ Bin(n,p). The distribution
of the data given the parameter, f(X|p) is called the likelihood. Suppose we observe X = x. Then we are
interested in the posterior distribution of p|X = z, the distribution of p given that we observe X = z.
The posterior reflects our updated belief about p given the data that we observe, and is given by Bayes Rule:

(51 X) = W (5)

As you can see, the posterior includes both the prior f(p) and the likelihood f(X|p) distributions. Intuitively,
the posterior combines our prior belief as well as the data that we observe.
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3.7.1 Conjugate priors

To find the posterior, we can use Bayes Rule as above. However, in certain cases, the posterior distribution
is part of the same distribution family as the prior. In that case, the prior is called a conjugate prior.
For example, in this case, the beta distribution is the conjugate prior for the binomial distribution. If p ~
Beta(a,b) and X|p ~ Bin(n,p), then the posterior is also Beta. Specifically, p|X = z ~ Beta(a+x,b+n—zx).

3.7.2 Normal-Normal Conjugacy

Let x|pu ~ N(u,0?%) and p ~ N (g, 03). Then the posterior distribution p|x also follows a Gaussian distri-
bution. Because of this we say that the Gaussian distribution is self-conjugate.

(*) Proof: First, note that for a > 0 and b,c € R we have

oo b2
/ exp(—az® 4 bx + ¢) dr = \/?exp ( + c) .
PN a 4a

2 2 1 1 -1
u|x~N<MOUQ +x2007 <2+2> '
0+ 0p o o

We know by Bayes’ theorem that

We will now show that

We have

os] 2 2
(A (52 o
2
1 7 (#+4) (2 ) -
2

2mooy %(%4_012) (%—F(,lz) 2\o? o}
0 0
o\
X 0

1 o[ ) (2 )

1, 1 2\ 02 o2

oogV 2T (%—l—glg) 2(02+03> 0

Now using this we arrive at the desired result:

2 2 2\ 2
1 1 /1 1 Hoo” + 0
p(M|$) = —F7—6&Xp | —5 ( + > (M - ) .
27T(1 1) ( 2 \ 02 08 02+03
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