play & sometimes play a,

Require
$$\alpha_{t}(s,a) = 0$$
 unless (s,a) visited at t .
Theorem $d-l \in ARN$ converges to Q^{t} as $t \to \infty$
as long as
() $\sum_{t} \alpha_{t}(s,a) = \infty$, all s,a
(2) $\sum_{t} \alpha_{t}^{2}(s,a) < \infty$, all s,a
(3) $Behavior is "greedy in the limit"
(eventually follows d -values)
Notes
1. For $\sum_{t} \alpha_{t} = \infty$, need to visit each
 (s,a) inferitely often [role of ϵ -greedy]
2. For $\sum_{t} \alpha_{t}^{2} < \infty$, need to reduce
 $learning rate ; e.g., $\alpha_{t}(s,a) = \frac{1}{N_{t}(s,a)}$
3. For "Greedy in limit",
 $typtical \epsilon_{t}(s) = \frac{1}{N_{t}(s)}$$$

C Deep-Q Networks state 18 Q-values
State
State
State Raw input, gray scaled, pixel
Nap. 84 × 84 pixels. / 84×84×4
Rue III A most recent frames / 2
Idea one Tabular representation fails!
Parameterize
$$Q(s, a, j, w)$$
, use
differentiable deep network (CNN)
Idea two Gradient descent on TO-error
 $w = w - \frac{1}{2} x_t \nabla_w [r + Y \max Q(s', a'; w', d) - Q(s, a; w)]$
 $+ x_t (r + Y \max Q(s', a'; w', d)) - Q(s, a; w)]$
 $+ x_t (r + Y \max Q(s', a'; w', d)) - Q(s, a; w)]$
Idea three Experience replay
Put (s, a, r, s') wito replay buffer, and
do minibatth gradrent clescent steps.
(Re-vice experience)

$$\begin{split} & D | Model-free: Policy learning \\ & Alopt a differentiable policy $T_{g}(a|s)$, parameters Θ . Learn directly $\int J_{g}(a|s)$, parameters Θ . Learn directly $\int J_{g}(a|s)$, $\mathcal{T}_{g}(a|s)$, $\mathcal{T}_{g}(a|$$$

SGD update. Given history h= (s,a,r,s',a'...) $\theta = \theta + \alpha \tau(h) \sum_{L} \nabla_{\theta} \ln \tau_{\theta} (a_{L}|s_{L})$ Can also use mini-batches Notes this is an "on policy" nethod because it's updating the policy that it's using to behave in the world. (2) can be combined with "Actor- Critic" unethous to speal-up + stabilizé learning.

How to play? Guided Monte Carlo Tree Seach (48 CPUs, 8 GPUs, 40 threads (1) Guided expansion current USING TISL a₂ α、 , und i uicreasingly 52 S_1 Q values ٩4 that back-up from 7 leaves 54 53 $\text{Leaf} \quad V(s_{L}) = \frac{1}{2} \frac{V_{g}(s_{L})}{2} + \frac{1}{2} G$ (S__) rollout Tfest (Didn't use To. Found TTSL for guiding expansion way never useful.