Note Policy extraction

$$TT(s) \in \arg\max\left[r(s,\alpha) + \forall \sum_{s'} p(s'|s,e) \lor (s')\right]$$

$$|A_{side}| (ousider f: R^{D} \rightarrow R^{D}, update x' = f(x), fix point $f(x^{*}) = x^{*}$.
 Function f is a contraction when
 $\| f(x) - f(y) \| < \| x - y \|$, $x \neq y$
 eg., $f(x) = \frac{x}{2}$. $(8, 2)$ $(4, 1)$ $(2, 1)$...
 $f(x) = 0$
 theorem Given contraction property s
 then $f(x)$ has a unique fix point ond
 $x' \neq f(x)$ converges.
 P_{cool} & f has unique fix point, else
 $\| f(x^{*}) - f(y^{*}) \| = \| x^{*} - y^{*} \|$, $violek faction$
 \mathbb{E} f here converge to fix point; consider $x \neq x^{*}$
 $\| f(x) - x^{*} \| = \| f(x) - f(x^{*}) \| < \| x - x^{*} \| |$$$

$$T(s) \in \arg \operatorname{rev} \left[r(s,a) + \delta \sum p(s'|s,e) V(s) \right]$$

(3) Algorithm 2 : Policy lteration

$$T_{(0)} \stackrel{E}{\longrightarrow} V^{(0)} \stackrel{T}{\longrightarrow} T_{(1)} \stackrel{E}{\longrightarrow} V^{(1)} \stackrel{T}{\longrightarrow} T_{(2)} \stackrel{(2)}{\longrightarrow}$$
Initialize $T_{(0)}^{(0)}$ (arbitrar))
Repeat () Evaluate V^{TT} (TT is correct policy)
(2) Improve:

$$T_{(s)} \stackrel{a}{\longrightarrow} arg \max[r(s,a) + Y \sum p(s'|s,a) \\ s' \quad V(s')]$$
for all s

$$TT \stackrel{a}{\longrightarrow} T_{1}'$$
Theorem PI converges to optimul policy in
a finite to of eteps (\Rightarrow) also get
optimal value feection)
(Note) Suppose for state s, exects an a

$$r(s,a) + Y \sum p(s'|s,a) V_{(s')}^{T} > V_{(s)}^{T}$$
(taking action once, then following TT
is better than following TT)
(Can show that $V^{(kn)} > V^{(k)}$ if
the policy changes.

Motes
() Policy evaluation
Given
$$\pi$$
, (an solve a system of equation
to get V^{π} .
 $V^{\pi}(s) = r(s_{2}\pi(s)) + Y \sum_{s'} p(s'|s_{3}\pi(s)) V(s')_{s}^{s}$ ell s
 s' is unknown, is equations
in vector form:
 $V^{\pi} = R^{\pi} + Y P^{\pi} V^{\pi}$, P^{π} is $|s| \times |s|$
 $(I - Y P^{\pi}) V^{\pi} = R^{\pi}$
 $(I - Y P^{\pi}) V^{\pi} = R^{\pi}$
 $full rank$

(omparison:

$$VI$$
 V(s) $max \left[r(s,a) + Y \sum_{s'} p(s'|s,a) V(s') \right]$
 $O(|s||A| L)$ per iteration
L u the max to reachable
next stores
 $\overline{P_1}$ tr'(s) 4 arg max $\left[r(s,a) + Y \sum_{s'} p(s'|s,a) V(s') \right]$
 $O(|s||A|L + |s|^3)$ per iteration
 $\overline{P_2 V v}$
 $\overline{P_2 V v}$

(5) Model-free RL: Value-based methods
(1) learn Q-function

$$Q^{T}(s,a) = r(s,a) + Y \sum p(s'|s,a) V^{T}(s')$$

 $Value of takens a, followed by rolay TT
 $Q^{T}(s,a) = r(s,a) + Y \sum p(s'|s,a) V^{*}(s')$
 $TT^{*}(s) = \arg \max Q^{T}(s,a)$
 $g^{T}(s,a) = r(s,a) + Y \sum p(s'|s,a) V^{*}(s')$
 $Q^{T}(s,a) = r(s,a) + Y \sum p(s'|s,a) \max Q^{T}(s',a')$
 $Q^{T}(s,a) = r(s,a) + Y \sum p(s'|s,a) \max Q^{T}(s',a')$
 $g^{T}(s,a) = r(s,a) + Y \sum p(s'|s,a) \max Q^{T}(s',a')$
 $g^{T}(s,a) = r(s,a) + Y \sum p(s'|s,a) \max Q^{T}(s',a')$
 $g^{T}(s,a) = r(s,a) + Y \sum p(s'|s,a) \max Q^{T}(s',a')$
 $g^{T}(s,a) = r(s,a) + Y \sum p(s'|s,a) \max Q^{T}(s',a')$
 $g^{T}(s,a) = r(s,a) + Y \sum p(s'|s,a) \max Q^{T}(s',a')$
 $g^{T}(s,a) = r(s,a) + Y \sum p(s'|s,a) \max Q^{T}(s',a')$
 $g^{T}(s,a) = r(s,a) + Y \sum p(s'|s,a) + Y \sum p(s'|s,a') + Y$$

1) Act: E-greedy agent TT(s) ~ (arg may Q(s,a) 10. prob 1-E random w. prob E 2 Learn Q* through " Temporal difference" updates El SARSA Each time get new experience (on policy) s, a, r, s', a' $Q(s,a) \simeq Q(s,a) + \alpha_{t} \left[+ 8 Q(s',a') - Q(s,a) \right]$ learning 1-step estimate of Q(s,e) rate (period t) TD-error & Q-LEARNING Each trave get new (off-policy) experience (s, a, r, s') $Q(s_1a) \leftarrow Q(s_1a) + \alpha_E \left[+ + 8 \max_{a'} Q(s_1a') - Q(s_1a) \right]$ 1 step estimate of Q*(S, a), TD-error

E SARSA is "on policy" because it estimates QTT for policy followed (michading E-exposition) E Q-LEARING is " of policy" because it estimates QT while following TT (converge to QT or (ory or (s, a) visited often enough)