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Policy evaluation
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Reinforement learing

Learn from environment no knowledge of

N or p the model

New challenge explore learning new thugs

vs exploit leverage what you
know to do well

Two main approaches
mmmm

Modelfreew

Learn model Don't learn model

predict heat
state

reward Directly learn
a

Use planning to policy or an

action value
decide how to act function

Can accomodate
Q function

charger ai rewards
OV si'mple

transitions
in expecrosiffutation

Costly lots of 0h If their charge
computation have to act a lot

to learn a new
behavior



Model free RL Value based methods
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