161	1				<u> </u>
-			1//	\ _	
<u> </u>	\vdash	L	1///		62
\ 		N	1//	4-	_
	\				
<u> </u>	+			•	•

Infinite time horgin

Y = 0.99 Refect actuator

Start H

Cost action -c every state

"Sticky" goals

Reward 6, = 0.1 Reward 62 = 0.2

[all Does a affect of policy?

A: No. $\int Y^{t} r_{t} = \int Y^{t} (r_{t-c}) = \int Y^{t} r_{t} - \int Y^{t} c$ [assuming wow cost c in goal states]

(on start

102/ Poer scaling rewards by 2 70 affect of policy?

A: No. \(\subseteq \tau^t \tau_t = \sum_t^t \tau^t \tau_t = \lambda \sum_t^t \tau^t \tau_t \)

(Q3) Does changing discount factor to Y = 0,1 affect opt poling?

A: Yes $\frac{8^{4} \cdot 0.1}{1-Y} < \frac{8^{5} \cdot 0.2}{1-Y}$ for Y = 0.99 $\frac{9^{14} \cdot 0.1}{1-Y} > \frac{5}{1-Y}$ for Y = 0.1

(A4) Suppose.

$$F(s, a, s') = F(s, a) + Y \Phi(s') - \Phi(s)$$

Does this charge approach

 $X^{k}(r_{k} + Y \Phi(s_{k+1}) - \Phi(s_{k}))$
 $Y^{k}(r_{k} + Y \Phi(s_{k+1}) - \Phi(s_{k}))$
 $Y^{k}(r_{k} + Y \Phi(s_{k}) - \Phi(s_{k}))$
 $Y^{k}(r_{k} + Y \Phi(s_{k}) - \Phi(s_{k}))$
 $Y^{k}(r_{k} + Y \Phi(s_{k}) - \Psi(s_{k}))$
 $Y^{k}(r_{k} + Y \Phi(s_{k}) - \Psi(s_{k}))$

$$= \int_0^\infty f + \int_1^\infty f + \int_1^\infty f + \cdots$$

$$- f(s_0)$$

$$= \int_0^\infty f(s_0) + \int_0^\infty f(s_0) +$$