CS181: Introduction to Machine Learning

Lecture 14 (Mixture models)

Spring 2021

Finale Doshi-Velez and David C. Parkes Harvard Computer Science

Unsupervised Learning

Data D = $\{x_1, x_2, ..., x_N\}$

Typical goals: understand, summarize, identify concepts

Unsupervised Learning: Clustering

+ graphical models, reinforcement learning

Last Class (2 of 3): K-Means

"Old Faithful" Geyser Eruptions (Bishop)

Last Class (3 of 3): HAC

+ graphical models, reinforcement learning

Today (2 of 2): Model data through a mixture of components

Run-through of GMM with E-M for estimation on the Old Faithful Geyser Data

(Bishop. Old Faithful data. 1 st. dev. contours. (b) E step. (c) M step; 2, 5, 20 interations.)

Initialization

(Bishop. Old Faithful data. 1 st. dev. contours. (b) E step. (c) M step; 2, 5, 20 interations.)

First E-Step

(Bishop. Old Faithful data. 1 st. dev. contours. (b) E step. (c) M step; 2, 5, 20 interations.)

First M-step

(Bishop. Old Faithful data. 1 st. dev. contours. (b) E step. (c) M step; 2, 5, 20 interations.)

(Bishop. Old Faithful data. 1 st. dev. contours. (b) E step. (c) M step; 2, 5, 20 interations.)

(Bishop. Old Faithful data. 1 st. dev. contours. (b) E step. (c) M step; 2, 5, 20 interations.)

K-Means

GMM / E-M algorithm

(Bishop)

