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Data D = {x1, x2, … xN}

Typical goals: understand, summarize, 
identify concepts



ML

RL

Supervised

Regression

Classification

Unsupervised

Clustering

Embeddings

Unsupervised Learning: Clustering
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+ graphical models, reinforcement learning

Last Class (1 of 3): The Cube
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Last Class (2 of 3): K-Means

“Old Faithful” Geyser Eruptions (Bishop)

Simple, but inflexible (linear
decision boundaries)
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Last Class (3 of 3): HAC

50 animals, 85 binary 
features (e.g., long neck, 
water, smelly) 

Flexible, but somewhat 
ad hoc (distance, linkage 
distance).

Poor performance in high
dimensions (curse of
dimensionality!)
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Today (1 of 2): The Cube



Today (2 of 2): Model data through a 
mixture of components 





Run-through of GMM with E-M for 
estimation on the Old Faithful 

Geyser Data



Initialization



First E-Step



First M-step 



Second M-step 



Fifth M-step 



Last M-step 



K-Means GMM / E-M algorithm

(Bishop)





(Zemel, Urtasun, Fidler)

What is E-M doing? (*advanced, and not 
covered in lecture)

p(X; w) is non-convex 

At each iteration t
• EZ[ . ] is a lower 

bound on ln p(X;w), 
and convex

• E-step: choose q 
s.t. EZ[ . ] = p(X;w) 
(“pull up to 
likelihood curve”)

• M-step: optimize 
lower bound

ln p(X ; w)

EZ ln p(X,Z; w)
step t

EZ ln p(X,Z; w)
step t+1

w(t) w(t+1)


