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Data {xn} Metric

Data D = {x1, x2, … xN}

Typical goals: understand, summarize, 
identify concepts
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Unsupervised Learning: Clustering
50 animals, 85 binary 
features (e.g., long neck, 
water, smelly) 



ML

RL

Supervised

Regression

Classification

Unsupervised

Clustering

Embeddings

Unsupervised Learning: Clustering
Understanding gene 
regulation
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Unsupervised Learning: Clustering

https://news.google.com/topstories?hl=en-US&gl=US&ceid=US:en

Organizing news 
stories
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Unsupervised Learning: Embedding

Understanding the 
European gene pool
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Unsupervised Learning: Embedding

Nielsen 
scanner 
data, 1000 
products, 8 
years

Through PCA 
we see the 
effect  of the 
08-09 
financial 
crisis on 
demand
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Continuous

Discrete

Supervised Unsupervised

Probabilistic

Non-Probabilistic

+ graphical models, reinforcement learning



Today: Clustering
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K-Means on “Old Faithful” Geyser Eruptions

• Yellowstone National Park, Wyoming
• 272 data points
• Features

• Duration of current eruption (xn2) 
• Duration of next eruption  (xn1)
• Standardized: xnj = (xnj-𝞵j)/𝞼j, where 𝞵j is mean of feature j, 𝞼j is standard 

deviation of feature j



K-Means on “Old Faithful” Geyser Eruptions
• Duration of next 

eruption  (x1)
• Duration of current 

eruption (x2)

(Bishop)
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K-Means: Linear Decision Boundaries

(Bishop)



K-Means: CIFAR-100

(Adams)

50,000 images
32x32x3 (RGB)
K=16
Clusters pick up on 
low frequency color 
variations





K-Medoids: CIFAR-100

(Adams)

50,000 images
32x32x3 (RGB)
K=16

Now use actual 
examples as 
prototypes
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Today: Clustering HAC (2 of 5)
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Today: Clustering What is closest 
to cluster 
{A,E}?
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Today: Clustering What is closest 
to cluster 
{A,E}?

“min” linkage
“max” linkage



Today: Clustering



Today: Clustering HAC with min 
distance (1 of 6)
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Today: Clustering HAC with min 
distance (6 of 6)



Today: Clustering HAC with centroid 
distance (1 of 7)
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Today: Clustering HAC with centroid 
distance (5 of 7)



Today: Clustering HAC with centroid 
distance (6 of 7)



Today: Clustering HAC with centroid 
distance (7 of 7)



Comparing HAC Group Distance criteria
• Which of “min” and “max” linkages will tend to merge large clusters 

with each other? 
• A: Min. Large clusters more likely to have a pair of examples that are close

• Which of “min” and “max” will tend to have a “chaining effect” and 
lead to “long, stringy” clusters?  

• A: Min. Only one distance has to be small to merge

• Which of “min” and “max” will tend to prefer compact clusters?
• A: Max. All distances have to be small to merge

• The “average” and “centroid” linkages are compromises, allowing 
some elongation but also preferring some compactness



Today: Clustering HAC applied to 
Pinwheel 



Comprehension Question

What will “min” do 
here?

What will “max” 
do here?



Example: Animal Clustering



Step 1: 
Compute the pairwise 
distances (Hamming 
distances)

Example: Animal Clustering



Result illustrated through 
“dendrogram”

Shows groups that were merged. 
The x-distance provides the 
distance between groups when 
merged.

Example: Animal Clustering
Step 2: Apply HAC 
clustering with “average” 
linkage



Features: votes 
on 172 bills

Example: Senators in 113th US Congress



Step 1: Computer 
pairwise distances 
between voting record (L2 
norm)

Darker is smaller distance
Ordered by similarity

Example: Senators in 113th US Congress



Step 2: HAC average

Dendrogram, showing the 
“top 2” clusters

Example: Senators in 113th US Congress



Example: Senators in 113th US Congress
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here?



Comprehension Question

What will “min” do 
here?

Only as last 
step would 
combine 
with center



Comprehension Question

What will “max” 
do here?



Comprehension Question

What will “max” 
do here?



Today: Clustering
“max” linkage will 
get to this point
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Today: Clustering
“max” linkage will 
get to this point

Next: combine 
outside clusters 
with center

Eventually merge 
in additional 
outside clusters


