Need measure of similarity:
es.,
$$d(\underline{x}, \underline{x}') = || \underline{x} - \underline{x}' ||_{2}$$
 (12)
edit distance (string)
Hamming distance (bit vectors)
:
Alg 1 K-meane clustering M2 (in)
- Define " prototype" \underline{M}_{2} (in)
- Boad assign $\underline{2}m + find \underline{2}M_{1}, ..., \underline{M}_{K}$
s.t.
mun $\sum_{k} \sum_{n,k} \underline{2}m + find \underline{2}M_{1}, ..., \underline{M}_{K}$
 $K - Meane clustering M2 (in)
- Boad assign $\underline{2}m + find \underline{2}M_{1}, ..., \underline{M}_{K}$
 $Min \sum_{k} \sum_{n,k} \underline{2}m + find \underline{2}M_{2}$
 $K - Meane clustering M2 (in)
- Boad assign $\underline{2}m + find \underline{2}M_{1}, ..., \underline{M}_{K}$
 $Min \sum_{k} \sum_{n,k} \underline{2}m + find \underline{2}M_{n} + \frac{M^{2}}{2}$
 $K - Men - convex NP - hard Digetime
 $Criterion should$
 $k = ||\underline{x} - \underline{M}_{k}||^{2}$
 $k = ||\underline{x} - \underline{M}_{k}||^{2}$
 $M - Min = \frac{1}{2}m + \frac{1}{2}m$$$$

Understanduj Uoyd's algorithm
Recall objective
mui
$$\sum_{\substack{k \neq k \notin \leq 1 \\ k \neq k \notin \leq 2 \\ mui}} \sum_{\substack{k \neq n \\ k \notin \leq 2 \\ mui}} \sum_{\substack{k \neq n \\ k \notin \leq 2 \\ mui}} \sum_{\substack{k \neq k \notin \leq 1 \\ mui}} \sum_{\substack{k \neq k \end{pmatrix}} \sum_{\substack{k$$

(onside alivn
1) How many cluster?
sheatler, better interpetation
larger, better extraction of concepts
obj.

$$\frac{1}{12} \times \frac{1}{3} \times \frac{1}{4}$$
 clusters
 $\frac{1}{12} \times \frac{1}{3} \times \frac{1}{4}$ cluster
 $\frac{1}{12} \times \frac{1}{3} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4$

Alternate Hierarchical Asslomerative Clusterniz (HAC) Data (×ng Distance d(G,G') distance between groups KAC:/ 1) Every example starts in its cluster 2) While the # clusters 7 1 Merge the two "closest" clusters Notes Forms a hierthy of cluster No need to specify K (# cluster) Deferminatio Need) two concepts 1) d(x, x') distance between paints 2) "linkage" function, min, max, Set d(6,6') overage, centroid L⇒ Get d(6,G')

Concept check
Date
$$0 \cdots 0$$
 Rade $0/1$ " x_0 "
 $k = 0 \cdots 0$
 $k = 0 \cdots$

Suppose 1000 examples are uniform randomly distributed in a D-dimensional unit hyperube Consider the squared distance between tandom examples x, Z: $|| \times - \mathbb{E}||_2^2 = \sum_{j=1}^{D} (x_j - \mathbb{E}_j)^2 \int_{\mathcal{D}_j}^{\mathcal{D}_j} Sum \, \mathcal{A}_j$ $\mathcal{A}_j = 1$ $\mathcal{A}_j = \sum_{j=1}^{D} (x_j - \mathbb{E}_j)^2 \int_{\mathcal{D}_j}^{\mathcal{D}_j} Sum \, \mathcal{A}_j$ $\mathcal{A}_j = \sum_{j=1}^{D} (x_j - \mathbb{E}_j)^2 \int_{\mathcal{D}_j}^{\mathcal{D}_j} Sum \, \mathcal{A}_j$ $\mathcal{A}_j = \sum_{j=1}^{D} (x_j - \mathbb{E}_j)^2 \int_{\mathcal{D}_j}^{\mathcal{D}_j} Sum \, \mathcal{A}_j$ $\mathcal{A}_j = \sum_{j=1}^{D} (x_j - \mathbb{E}_j)^2 \int_{\mathcal{D}_j}^{\mathcal{D}_j} Sum \, \mathcal{A}_j$ $\mathcal{A}_j = \sum_{j=1}^{D} (x_j - \mathbb{E}_j)^2 \int_{\mathcal{D}_j}^{\mathcal{D}_j} Sum \, \mathcal{A}_j$ $\mathcal{A}_j = \sum_{j=1}^{D} (x_j - \mathbb{E}_j)^2 \int_{\mathcal{D}_j}^{\mathcal{D}_j} Sum \, \mathcal{A}_j$ where x;, z; ~ U(0,1) Distance is saft of this. (compare to mui distance 0, max distance 10) El Distr. of inter-example distances - Dicreasing concentration $\int_{0}^{1} \frac{1}{1 + 4} = \int_{0.5}^{1} \frac{1}{2 + 3} = \int_{0}^{1} \frac{1}{2 + 5} = \int_{0}^{1} \frac{1}{13} = \int_{0}^{1} \frac{1}{13$