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Model Selection via Cross Validation

I For each model (e.g., linear, or neural network, or random forest),

measure its performance by “holding out” one fold at a time (e.g.,

with 5 ‘experiments’ as per here)

I For example, train BCDE / validate A; train ACDE / validate on B;

etc. Measure average validation error.

I Choose model with best, average validation error. Then train on all

data.
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The Bias-Variance Decomposition

generalization error = systematic error︸ ︷︷ ︸
bias

+ sensitivity of prediction︸ ︷︷ ︸
variance

I Simple models under-fit: will deviate from data (high bias) but will

not be influenced by peculiarities of data (low variance).

I Complex models over-fit: will not deviate systematically from data

(low bias) but will be very sensitive to data (high variance).

Note: the right tradeoff between bias and variance depends on the

amount of data. More data, can use more complex models.
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Bias-Variance: Analysis (1 of 4)

I Define the trained model fD(x) ∈ R.

I Data D is a random variable, sampled D ∼ PN (for distr. P ).

I Consider some new input x. Conditioned on x, true target y is a

random variable (may be noise.)

We’re interested in the generalization error at x:

ED, y|x[(y − fD(x))
2],

where the expectation is taken wrt D and y.
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Bias-Variance: Analysis (2 of 4)

I Define the true conditional mean, y = Ey|x[y].

The generalization error at x is:

ED, y|x[(y − fD(x))
2] = ED, y|x[(y − y + y − fD(x))

2]

=Ey|x[(y − y)2]︸ ︷︷ ︸
noise

+ED[(y − fD(x))
2]︸ ︷︷ ︸

bias+var

+2ED, y|x[(y − y)(y − fD(x))]︸ ︷︷ ︸
0

(1)

The last term can be written as

2ED[y − fD(x)] · Ey|x[y − y] = 2ED[y − fD(x)] · 0 = 0.
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Bias-Variance: Analysis (3 of 4)

I Define the prediction mean f(x) = ED[fD(x)].

Expanding the second term in (1), we have

ED[(y − fD(x))
2] = ED[(y − f(x) + f(x)− fD(x))

2] =

(y − f(x))2︸ ︷︷ ︸
bias squared

+ED[(f(x)− fD(x))
2]︸ ︷︷ ︸

variance

+2ED[(y − f(x))(f(x)− fD(x))]︸ ︷︷ ︸
0

(2)

The last term can be written as

2(y − f(x))ED[f(x)− fD(x)] = 2(y − f(x))(0) = 0.
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Bias-Variance: Analysis (4 of 4)

Substituting (2) back into (1), we have:

ED, y|x[(y − fD(x))
2] =

Ey|x[(y − y)2] + (y − f(x))2 + ED[(f(x)− fD(x))
2]

= noise(x) + (bias(f(x)))2 + varD(fD(x)).

Depends on noise, and (i) systematic error (or bias), and (ii) sensitivity

of the predictor to data (or variance.)

Considering the expectation over x, the generalization error is:

Ex

[
noise(x) + (bias(f(x)))2 + varD(fD(x))

]
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The Bias-Variance Tradeoff

I If model fits the training data perfectly and there is a small amount

of data then the variance will be high (overfits!)

I If model is very simple, then the variance will be low but the bias

high (underfits!)

I As N →∞ the variance ED[(f(x)− fD(x))
2] falls, can use a more

complex model.
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