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Model Selection via Cross Validation

» For each model (e.g., linear, or neural network, or random forest),
measure its performance by “holding out” one fold at a time (e.g.,

with 5 ‘experiments’ as per here)

» For example, train BCDE / validate A; train ACDE / validate on B;

etc. Measure average validation error.

» Choose model with best, average validation error. Then train on all

data.
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The Bias-Variance Decomposition

generalization error = systematic error+ sensitivity of prediction

bias variance
» Simple models under-fit: will deviate from data (high bias) but will
not be influenced by peculiarities of data (low variance).

» Complex models over-fit: will not deviate systematically from data

(low bias) but will be very sensitive to data (high variance).

Note: the right tradeoff between bias and variance depends on the

amount of data. More data, can use more complex models.
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Bias-Variance: Analysis (1 of 4)

» Define the trained model fp(x) € R.
» Data D is a random variable, sampled D ~ PV (for distr. P).

» Consider some new input x. Conditioned on x, true target y is a

random variable (may be noise.)

We're interested in the generalization error at x:

Ep, yx[(y — fp(x))%],

where the expectation is taken wrt D and y.
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Bias-Variance: Analysis (2 of 4)

> Define the true conditional mean, 7 = E,[y].

The generalization error at x is:

Ep, yx[(y — fp(x))%] = Ep yx[(y — 7 + 7 — fp(x))]
=Eyx[(y = 9)*] +Epl(y — fp(x))*] + 2Ep yx[(y — ) (¥ — fp(x))]

~~

noise bias+var 0

(1)

The last term can be written as

26p[y — fo(x)] - Eyxly — 7] = 2Ep[y — fp(x)]- 0= 0.
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Bias-Variance: Analysis (3 of 4)

» Define the prediction mean f(x) = Ep[fp(x)].

Expanding the second term in (1), we have

Ep[(y — fp(x))’] = Ep[(y — f(x) + f(x) — fp(x))’] =
(¥ — f(x))* +Ep[(f(x) - fp(x))*] + 2Ep[(7 — f(x))(f(x) — fp(x))]
0

bias squared variance

()

The last term can be written as

2(y — f(x))Ep[f(x) — fo(x)] = 2(7 — f(x))(0) = 0.
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Bias-Variance: Analysis (4 of 4)

Substituting (2) back into (1), we have:

Ep yxl(y — fp(x))?] =
Eyx[(y = 9)*] + (7 — f(x))* + Ep[(f(x) - fp(x))?]
= noise(x) + (bias(f(x)))? + varp(fp(x)).

Depends on noise, and (i) systematic error (or bias), and (ii) sensitivity
of the predictor to data (or variance.)

Considering the expectation over x, the generalization error is:

Ex [noise(x) + (bias(f(x)))* + varp(fp(x))]
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The Bias-Variance Tradeoff

» If model fits the training data perfectly and there is a small amount

of data then the variance will be high (overfits!)

» If model is very simple, then the variance will be low but the bias

high (underfits!)

» As N — oo the variance Ep|[(f(x) — fp(x))?] falls, can use a more

complex model.
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