
CS 181 Spring 2020
Softmax

Consider a K-class classification problem.

Let {wk}Kk=1 be defined such that for some data point x, zk = w>
k x can be interpretted as a score

for x belonging to class k.

Multi-class Logistic Regression (LR) with a trained set of weights assigns x the class k for which it
has the highest such score.

The softmax transformation takes as input a vector, and outputs a transformed vector of the same
size.

softmax(z)k =
exp(zk)∑K
`=1 exp(z`)

, for all k

LR uses the softmax over a vector of K scores z = [w>
1 x, . . . ,w

>
Kx] so that it can be normalized

and intepretted as a vector of probabilities.

p(y = Ck |x; {w`}K`=1) = softmax([w>
1 x . . .w>

Kx]>)k =
exp(w>

k x)∑K
`=1 exp(w

>
` x)

.

where Ck is a one-hot vector with a 1 in coordinate k and 0s elsewhere.

Assuming data D = {(xi,yi)}Ni=1, the negative log-likelihood can be written as:

L({w`}) = −
N∑
i=1

ln p(yi |xi; {w`})

The softmax is an important function and you will see it again in other models, such as neural
networks. In this problem, we aim to gain intuitions into the properties of softmax and multiclass
logistic regression.

1. The output of the softmax is a vector with non-negative components that are at most 1.

Reason The jth component of the softmax function softmax(z) is:

softmax(z)j =
exp(zj)∑
i exp(zi)

.

As exp(x) > 0 for all x ∈ R, we have exp(zj) > 0 and
∑

i exp(zi) > 0. Thus the output of the
softmax function is a vector with non-negative components. Since exp(zj) appears in both
the numerator and the denominator (as the i = j term in the sum), the denominator must be
at least as large as the numerator, and so the components are at most 1.



2. The output of the softmax defines a distribution, so the components sum to 1.

Reason Summing over the components:

∑
j

softmax(z)j =
∑
j

exp(zj)∑
i exp(zi)

=

∑
j exp(zj)∑
i exp(zi)

= 1.

3. Softmax preserves order. This means that if elements zk < z` in z, then softmax(z)k <
softmax(z)` for any k, `.

Reason If zj ≥ zk, then exp(zj) ≥ exp(zk) as the exponential is a monotonically increasing
function. Dividing by the positive constant

∑
i exp(zi), this inequality implies that:

softmax(z)j =
exp(zj)∑
i exp(zi)

≥ exp(zk)∑
i exp(zi)

= softmax(z)k,

which shows that the softmax function preserves the order of the elements of z.

4.
∂softmax(z)k

∂zj
= softmax(z)k(Ikj − softmax(z)j) for any k, j

where indicator Ikj = 1 if k = j and Ikj = 0 otherwise.

Reason If j 6= k, then:

∂softmax(z)k
∂zj

=
∂

∂zj

exp(zk)∑
i exp(zi)

= − exp(zk)

(
∑

i exp(zi))
2 exp(zj)

= − exp(zk)∑
i exp(zi)

exp(zj)∑
i exp(zi)

= −softmax(z)ksoftmax(z)j .

If j = k then:

∂softmax(z)k
∂zj

=
∂

∂zj

exp(zk)∑
i exp(zi)

=
exp(zk)∑
i exp(zi)

− exp(zj)
2

(
∑

i exp(zi))
2

=

(
1− exp(zk)∑

i exp(zi)

)
exp(zk)∑
i exp(zi)

= softmax(z)k(1− softmax(z)j).

Putting these results together:
∂softmax(z)k

∂zj
= softmax(z)k(Ikj − softmax(z)j)



5. Using (4), show that:

∂

∂wj
L({w`}) =

N∑
i=1

[
p(yi = Cj |xi; {w`})− yij

]
xi

Solution Write the negative log-likelihood.

L({w`}) = −
N∑
i=1

K∑
k=1

yik ln p(y = Ck|xi; {w`})

∂

∂wj
L({w`}) = −

N∑
i=1

K∑
k=1

yik
∂

∂wj
ln p(y = Ck|xi; {w`})

Using Derivative of log + chain rule

= −
N∑
i=1

K∑
k=1

yik

(
1

p(y = Ck|xi; {w`})

)
∂

∂wj
p(y = Ck|xi; {w`})

Rewrite using chain rule

= −
N∑
i=1

K∑
k=1

yik

(
1

p(y = Ck|xi; {w`})

)
∂

∂zj
p(y = Ck|xi; {w`})

∂

∂wj
zj

The derivative at the end is just the derivative of a dot product:

= −
N∑
i=1

K∑
k=1

yik

(
1

p(y = Ck|xi; {w`})

)
∂

∂zj
p(y = Ck|xi; {w`})x

Use the derivative of the softmax found in (d)

= −
N∑
i=1

K∑
k=1

yik

(
1

p(y = Ck|xi; {w`})

)(
p(y = Ck|xi; {w`})

)(
Ikj − p(y = Cj |xi; {w`})

)
xi

Notice that two terms are conveniently reciprocals and simplify

= −
N∑
i=1

K∑
k=1

yik

(
Ikj − p(y = Cj |xi; {w`})

)
xi

Foil the terms

= −
N∑
i=1

K∑
k=1

yikIkjxi +

N∑
i=1

p(y = Cj |xi; {w`})xi

( C∑
k=1

yik

)



The Ikj in the first sum collapses the sum over k to the term where j = k. As the yi are
one-hot, we have that

∑K
k=1 yik = 1. Using these facts:

∂

∂wj
L({w`}) = −

N∑
i=1

yijxi +

N∑
i=1

p(y = Cj |xi; {w`})xi

=

N∑
i=1

(p(y = Cj |xi; {w`})− yij)xi


