CS 181 Spring 2020 Section 9
Variable Elimination, HMMs, and Kalman Filters

1 Variable Elimination in Bayesian Networks

Recall that a Bayesian network is a graphical model that represents random variables and their
dependencies using a directed acyclic graph. They allow us to efficiently model joint distributions
over many variables by taking advantage of the local dependencies between variables, and they
form the foundation of other models that we’ll explore today.

In this section, we discuss an inference algorithm called variable elimination. Consider the Bayesian

network we saw in lecture last week:

Assume that all of the random variables are Bernoulli, meaning their domain is {0, 1} with domain
size k = 2. In this network, we can encode the joint distribution as

p(x1, x2, 23, 24) = p(x1)p(x2)p(x3|T1, x2)p(2a|T3)

If we wanted to calculate the marginal distribution of x4 that is, have x4 be our query without any
evidence (conditioned on variables), we could naively marginalize out all other variables:

p(z4) = Z Z Zp(ﬂfl, T2, X3, T4)

ry T2 X3

=3 > pla)p(x2)p(as|er, z2)p(za|rs)

ry T2 I3

To calculate these sums we would need to multiply two k-dimensional vectors for each of the k% = 8
possible combinations of x1, xs, z3. In general, the number of combinations grows exponentially in
the number of variables.

Note that Bayesian nets encode dependencies between variables, which we can use to calculate the
marginal distribution more efficiently. By reordering the sums and eliminating one variable at a



time, we derive the variable elimination procedure:

p(ra) =) > > pla)p(a2)p(as|er, z2)p(aa|zs)

r1 T2 I3

_ ;p(m\xg) ;p(m) g:p(l‘;ﬂﬂfl, wa)p(w1)
- g:p(m4x3) i:p(xz)p(;zam)

= ip(wws)p(;:a)

= px(gm)

Here, we eliminate x; using a k by k matrix ¢;(zs,z2), then xo with a K-dimensional vector
g2(z3), and lastly x3, which results in a final K-dimensional vector of probabilities for z4. Notice
that we have a poly-tree, and we’re eliminating leaves first and working towards our query variable,
Xq.

Alternatively, we could have eliminated variables in a different order:

plwa) = D> > plar)p(wa)p(wslar, va)p(walas)

r1 X2 T3

= pa1) pr(xQ) ;p(wslxh z2)p(2a|r3)
— g:p(:m) g:p(wz)p(;lwl, T2)

= ip(wl)p(;\fcl)

= p?264)

Here, we eliminate 3, then xo, then z1. Notice that the ordering matters: eliminating x3 first
results in a kxkxk object g(z1,x2,x4).

In general, the computational cost of variable elimination depends on the number of variables in
these intermediate factors, in particular the largest object computed (”tree-width”).



1.1 Exercise: Variable Elimination

Consider the Bayesian network described in above, and assume the following Conditional Proba-
bility Table (CPT). Let x; € {0, 1} denote the values that variable X; can take. Our goal is to find

p(x4).

r3 | 21 | 22 | p(as|ry, z2)

0|00 0.5

0 0 1 0.2 T4 | T3 p($4|$3)
x1 | p(xq) x9 | p(x2) 0| 11]0 0.9 010 0.7
0 0.3 0 0.6 0 1 1 0.5 0 1 0.1
1 0.7 1 0.4 1 0 0 0.5 1 0 0.3

1 0 1 0.8 1 1 0.9

1 1 0 0.1

1 1 1 0.5

1. Eliminate X, first. Draw the resulting Bayesian network and compute the CPT.

2. Eliminate X3 first. Draw the resulting Bayesian network and compute the CPT.

3. How many sum-product calculations do each of these variable elimination orders require?
Which one is preferable?

Solution:




2 Hidden Markov Models

A Hidden Markov Model (HMM) is useful for inferring a sequence of unknown or hidden states
from a corresponding sequence of observed evidence.

Consider a sequence of one-hot encoded states si,...,s, where s; € {S;}{_,, and a corresponding
sequence of observations (x1,...,x,) where x; € {O; };”:1 Each state can be one of ¢ possible states,
and each observation can be one of m possible observations. Note that N is the number of data

points (each of which is a sequence), where n is the length of a sequence (assume all sequences are
the same length).

2.1 Graphical Model

2.2 Model Assumptions

HMMs are characterized by and allow us to reason about the following joint distribution

P81y s Sny X1y vy Xn) =D(S1,. -, Sn)P(X1y - oy X | S5+, Sn)

However, it’s not immediately obvious how we should optimize this model, and the following as-
sumptions make this easier:

e The future hidden state is independent of past hidden states given the present (Markov
Property):

p(8t+1 | S1,...8,X1,... ,Xt) = p(stJrl | St)
e Observations only depend on the present hidden state:
p(xt ‘ S1y.y Sty X1y 7Xt—1) - p(Xt ‘ St>

Notice that the above assumptions allow us to factor the joint as follows:

p(slw"asnaxla"wxn)

p(S1, .y Sn)P(X1y o, X | 81,5+, 8n)

n

n—1
p(s1) [T p(serr | se) [ p(xe | s0)
t=1

t=1



2.3 Exercise: When to Use HMMs (Source: CMU)

For each of the following scenarios, is it appropriate to use a Hidden Markov Model? Why or why
not? What would the observed data be in each case, and what would the hidden states capture?
1. Stock market price data
2. Recommendations on a database of movie reviews
3. Daily precipitation data in Boston
4. Optical character recognition for identifying words

Solution:

2.4 Parameterization
e O € R® defines the prior distribution over initial hidden states
e T c R°*“: transition matrix where T}; is the probability of transitioning from Sy to S;

o {m}¢_,: conditional probabilities of observations given hidden states such that p(x; = Oj|s; =
Sk; {77}) = Tk;j- Vk 7, € R™.

First, we need to estimate the parameters from the data, which we can do with a variant of EM.
Then, with our trained HMM, we are able to perform several inference tasks on our data.

2.5 EM for HMMs

¢) of length n represented as row vec-
tors, we want to infer the parameters {T, 0, {7 }}. Had we been given the true states, we could
easily compute joint probability p(x?,s’) and write the complete-data log likelihood, and maximize
with respect to the parameters. Instead, we need to estimate state distributions and parameters
iteratively.

Given data points {x'}¥ , defined by sequences (z¢,...,z"



2.5.1 Forward-Backward Algorithm

The HMM model is characterized by the joint distribution p(sy,..., Sn,X1,...,Xy), which means
that many of our training and inference tasks require marginalization to obtain conditionals. Thus,
naive algorithms can be expensive (they require lots of nested summations over states), and we use
EM instead. We define the recurrence relations o;(s;) and 5¢(s;) in the E-Step:

e «ay(s;) represents the joint probability of observations 1,...,¢ and state t. a; can be defined
in terms of ay_1. We moove forwards through the sequence to calculate the a’s

e [(;(s¢) represents the joint probability of observations ¢ + 1,...,n conditioned on state t. [
can be defined in terms of 5;11. We move backwards through the sequence to calculate the
’s.

Ba(s2) = p(x3,x4/s2)

Vs3: as(ss) = p(xs|s3) ZP(S3 | s2)az(s2) Vs2: Ba(s2) = > p(ss|s2)p(xs|ss)Bs(ss)

s3

(a) alpha (b) beta

Note that the probabilities we use for calculating o and 3 are given by the parameters that we fix
in the E-Step.

) ~ op(xelse) D, p(selsi—1)ai—1(si—1) 1 <t<n
Vs i aulsy) = { p(x1 |s1)p(s1) Oo.w.

if1<t¢
Vs Bu(sy) = { ?stﬂp(stﬂ | se)p(Xt+1 | St41)Bet1(Se41) :)W_ <n

2.5.2 Inference Patterns with o, 3

The following patterns are useful for inference with a trained HMM as well as during the E-
Step:

at(st)ﬁt(st) — p(Xla <oy Xnp, St) 0.8 p(st‘xla “e. aXn)

joint of observations: p(xi,...,%n) = > au(s¢)Bi(sy) (for any )

smoothing: p(s;|x1,...,Xp) X p(X1,...,Xn,8t) = ar(se)Be(st)

prediction: p(Xp41|X1,...,Xp) X an,snﬂ an(8n)D(Sn+1 | Sn)P(Xn+1 | Snt1)

transition: p(s¢, Ser1 | X1, ..., Xpn) X 4 (St)p(Se41 | St)P(Xet1 | St1) Bet1(Se+1)



2.5.3 E-Step

The goal of the expectation step is to compute the expected values of the hidden states given a

fixed set of parameters w = {T, 0, {m;}}. That is, we estimate the state distribution for st,... s},
given x’.
Let the ¢ x 1 vector ¢ = (¢}, . -, ¢},) represent x’s distribution over states for time ¢ under the

current parameters. Let Qj,.; be the ¢ X ¢ matrix of transition probabilities under the current
parameters. Then

e «’s and (’s are defined in terms of fixed parameters.
e q’s are defined in terms of a’s and B’s
e Calculate ¢}, = p(s} = Si|x’;w) for all ¢ and k (use smoothing eq. just above)

e (Calculate qith,M = p(si = Sk,si, = S¢|x’; w) (use transition eq. just above)

2.5.4 M-Step

Now we need to update our parameters to maximize the expected complete-data log likelihood
Eg[lnp(x,S;w)]. Applying the appropriate Lagrange multipliers and maximizing with respect to
each of the parameters of interest, we recover the following update equations:

N N n
Ny, = Z ¢t (first period) and more generally —Nj = Z Z ¢4, (all periods)
i=1 i=1 t=1
N n—1
N_,. = Z Z gy, (without last period)
i=1 t=1
N n—1
Nio = Z Z Gt 41k, (transitions)
i=1 t=1

N n
Nkj = Z Z qik:):f;j (observations)
i=1 t=1
- Nig Nij - Nie
Op = — Frj = =2 t=—=
N J Nk N—nk




2.6 Exercise: Parameter Estimation in Supervised HMMs

You are trying to predict the weather using an HMM. The hidden states are the weather of the
day, which may be sunny or rainy, and the observable states are the color of the clouds, which can
be white or gray. You have data on the weather and clouds from one sequence of four days (note:
the hidden states are observed here):
Day ‘ Weather ‘ Clouds
1 Sunny White
2 Rainy Gray
3 Rainy Gray
4 Sunny Gray
1. Draw a graphical model representing the HMM.
2. Give the values of N,n,c and of the one-hot vectors si,...,s},x},... x}.
3. Estimate and interpret the values of the parameters 8, T, {m}}?_, using the MLE estimators
for the supervised HMM:

b — Nig £ = Nt s = Ny
7 N_nk’ 7 Ny

N n—1

Nk—ZZstk, le—Zslk, N—”k_zzstk

=1 t=1 i=1 t=1
N n—1

N n
_ i i _ i i
N = Z Z StkSt+10s Vkj = Z Zstk:xtj

i=1 t=1 i=1 t=1

Solution:



2.7 Exercise: EM for HMMs

You are trying to model a toy’s state using an HMM. At each time step, the toy can be active (state
1) or inactive (state 2), but you can only observe the color of the indicator light, which can be red
(observation state 1) or green (observation state 2). You have collected data from one sequence:

Time ‘ Light
1 Green
2 Red
3 Green
2 1
You initialize your EM with @ = [3 3|7, T = |} 3|, mi=[3 3|, m =3 1"
1. Compute a1, a9, ag, 51, B2, B3 for the forw%rd%backward algorithm using the initial parameter

values.
2. How is qf defined? Compute the values of qi,q} using the o and 3 values.
3. How is Q;t 41 defined? Compute the value of QiQ using the a and 3 values.

During EM, at one point you obtain the following values after the E step:

2t 2t 217

l |
1. Use the above values to compute Nk, Nkl» Nkj.
2. Complete the M step by updating the parameters 8, T, 71, 7s.

6

1
Ql, = [? J Q- [

NN

Solution:







3 Kalman Filters
Now consider the following dynamical system model:
241 = Pz + &

xy = Az + v

where z are the hidden variables and x are the observed measurements. ® and A are known
constants, while € and v are random variables drawn from the following normal distributions:

€t NN(MHUEZ)

Yt~ N(/’L’W 0-3/)

This is called a (one-dimensional) linear Gaussian state-space model. It is closely related to an
HMM - try drawing out the graphical model! — but here the hidden states and the observations
are now continuous and normally distributed. Linear Gaussian state-space models have convenient
mathematical properties and can be used to describe noisy measurements of a moving object (e.g.
missiles, rodents, hands), market fluctuations, etc.

The Kalman filter is an algorithm to perform filtering in linear Gaussian state-space models, i.e.
to find the distribution of z; given observations 1, ..., z;. The distribution of z | z1, ..., xs will be

N(ut|s, 0752|s)' If we start with p;_q);_; and O'?_l‘t_l, the algorithm tells us to

1. Define the distribution of 2|1, ..., 241 by computing s, and o2 This is called the

t)t—1-
prediction step.

2. Define the distribution of z; | z1, ..., z; by computing pg)e and 0't2| ;- This is called the update
step.

The Kalman filter alternates between prediction and update steps, assimilating observations one
at a time. It requires one forward pass through the data, and is analogous to obtaining the a’s in
an HMM.



