
CS 181 Spring 2020 Section 9

Variable Elimination, HMMs, and Kalman Filters

Solution

1 Variable Elimination in Bayesian Networks

Recall that a Bayesian network is a graphical model that represents random variables and their
dependencies using a directed acyclic graph. They allow us to efficiently model joint distributions
over many variables by taking advantage of the local dependencies between variables, and they
form the foundation of other models that we’ll explore today.

In this section, we discuss an inference algorithm called variable elimination. Consider the Bayesian
network we saw in lecture last week:

x1 x2

x3

x4

Assume that all of the random variables are Bernoulli, meaning their domain is {0, 1} with domain
size k = 2. In this network, we can encode the joint distribution as

p(x1, x2, x3, x4) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)

If we wanted to calculate the marginal distribution of x4 that is, have x4 be our query without any
evidence (conditioned on variables), we could naively marginalize out all other variables:

p(x4) =
∑
x1

∑
x2

∑
x3

p(x1, x2, x3, x4)

=
∑
x1

∑
x2

∑
x3

p(x1)p(x2)p(x3|x1, x2)p(x4|x3)

To calculate these sums we would need to multiply two k-dimensional vectors for each of the k3 = 8
possible combinations of x1, x2, x3. In general, the number of combinations grows exponentially in
the number of variables.



Note that Bayesian nets encode dependencies between variables, which we can use to calculate the
marginal distribution more efficiently. By reordering the sums and eliminating one variable at a
time, we derive the variable elimination procedure:

p(x4) =
∑
x1

∑
x2

∑
x3

p(x1)p(x2)p(x3|x1, x2)p(x4|x3)

=
∑
x3

p(x4|x3)
∑
x2

p(x2)
∑
x1

p(x3|x1, x2)p(x1)

=
∑
x3

p(x4|x3)
∑
x2

p(x2)p(x3|x2)

=
∑
x3

p(x4|x3)p(x3)

= p(x4)

Here, we eliminate x1 using a k by k matrix g1(x3, x2), then x2 with a K-dimensional vector
g2(x3), and lastly x3, which results in a final K-dimensional vector of probabilities for x4. Notice
that we have a poly-tree, and we’re eliminating leaves first and working towards our query variable,
x4.

Alternatively, we could have eliminated variables in a different order:

p(x4) =
∑
x1

∑
x2

∑
x3

p(x1)p(x2)p(x3|x1, x2)p(x4|x3)

=
∑
x1

p(x1)
∑
x2

p(x2)
∑
x3

p(x3|x1, x2)p(x4|x3)

=
∑
x1

p(x1)
∑
x2

p(x2)p(x4|x1, x2)

=
∑
x1

p(x1)p(x4|x1)

= p(x4)

Here, we eliminate x3, then x2, then x1. Notice that the ordering matters: eliminating x3 first
results in a kxkxk object g(x1, x2, x4).

In general, the computational cost of variable elimination depends on the number of variables in
these intermediate factors, in particular the largest object computed (”tree-width”).



1.1 Exercise: Variable Elimination

Consider the Bayesian network described in above, and assume the following Conditional Proba-
bility Table (CPT). Let xi ∈ {0, 1} denote the values that variable Xi can take. Our goal is to find
p(x4).

x1 p(x1)

0 0.3
1 0.7

x2 p(x2)

0 0.6
1 0.4

x3 x1 x2 p(x3|x1, x2)
0 0 0 0.5
0 0 1 0.2
0 1 0 0.9
0 1 1 0.5
1 0 0 0.5
1 0 1 0.8
1 1 0 0.1
1 1 1 0.5

x4 x3 p(x4|x3)
0 0 0.7
0 1 0.1
1 0 0.3
1 1 0.9

1. Eliminate X1 first. Draw the resulting Bayesian network and compute the CPT.
2. Eliminate X3 first. Draw the resulting Bayesian network and compute the CPT.
3. How many sum-product calculations do each of these variable elimination orders require?

Which one is preferable?

Solution

1. The resulting network is:

X2

X3

X4

The variable elimination process eliminatesX1 by marginalizing outX1: p(x3|x2) =
∑

x1
p(x3|x1, x2)p(x1).

For example:

p(X3 = 0|X2 = 0) =
∑

x1∈{0,1}

p(X3 = 0|X1 = x1, X2 = 0)p(X1 = x1)

= 0.5 · 0.3 + 0.9 · 0.7
= 0.78

This is a sum-product calculation, and we need to do one for each value of X2 and X3. Thus,
there are four sum-product calculations in total. The resulting CPT is:



x3 x2 p(x3|x2)
0 0 0.78
0 1 0.41
1 0 0.22
1 1 0.59

2. The resulting network is

X1 X2

X4

The variable elimination process eliminates X3 by marginalizing out X3: p(x4|x1, x2) =∑
x3
p(x4|x3)p(x3 | x1, x2). This would be the first intermediate term. For example:

p(X4 = 0|X1 = 0, X2 = 0) =
∑

x3∈{0,1}

p(X4 = 0|X3 = x3)p(X3 = x3|X1 = 0, X2 = 0)

= 0.7 · 0.5 + 0.1 · 0.5
= 0.40

We need to do this for each combination of values for X1, X2 and X4. Thus, there are eight
sum-product calculations in total. The resulting CPT is:

x4 x1 x2 p(x4|x1, x2)
0 0 0 0.40
0 0 1 0.22
0 1 0 0.64
0 1 1 0.40
1 0 0 0.60
1 0 1 0.78
1 1 0 0.36
1 1 1 0.60

3. In these variable elimination operations, we need to compute intermediate terms. The cost of
computing these depends on the number of variables that they mention, since each variable
increases the number of required sum-product calculations by a factor of k = 2.

For the first ordering, the intermediate terms are:

• p(x3 |x2): mentions x2 and x3, and thus requires four sum-product calculations (for each
row in the original CPT)

• p(x3): mentions x3 and thus requires two sum-product calculations

• p(x4): mentions x4 and thus requires two sum-product calculations



We have a total of 4 + 2 + 2 = 8 sum-product calculations.

For the second ordering, the intermediate terms are:

• p(x4 |x1, x2): mentions x1, x2 and x4, and thus requires eight sum-product calculations
(for each row in the original CPT)

• p(x4 |x1): mentions x1 and x4, and thus requires four sum-product calculations

• p(x4): mentions x4 and thus requires two sum-product calculations

We have a total of 8 + 4 + 2 = 14 sum-product calculations.

Thus, we see that the first ordering is preferable since it requires fewer computational steps.

End Solution



2 Hidden Markov Models

A Hidden Markov Model (HMM) is useful for inferring a sequence of unknown or hidden states
from a corresponding sequence of observed evidence.

2.1 Graphical Model

Consider a sequence of one-hot encoded states s1,...,sn where st ∈ {Sk}ck=1, and a corresponding
sequence of observations (x1,...,xn) where xt ∈ {Oj}mj=1. Each state can be one of c possible states,
and each observation can be one of m possible observations. Note that N is the number of data
points (each of which is a sequence), where n is the length of a sequence (assume all sequences are
the same length).

2.2 Model Assumptions

HMMs are characterized by and allow us to reason about the following joint distribution

p(s1, . . . , sn,x1, . . . ,xn) = p(s1, . . . , sn)p(x1, . . . ,xn | s1, . . . , sn)

However, it’s not immediately obvious how we should optimize this model, and the following as-
sumptions make this easier:

• The future hidden state is independent of past hidden states given the present (Markov
Property):

p(st+1 | s1, . . . st,x1, . . . ,xt) = p(st+1 | st)

• Observations only depend on the present hidden state:

p(xt | s1, . . . , st,x1, . . . ,xt−1) = p(xt | st)

Notice that the above assumptions allow us to factor the joint as follows:

p(s1, . . . , sn,x1, . . . ,xn) =

p(s1, . . . , sn)p(x1, . . . ,xn | s1, . . . , sn) =

p(s1)
n−1∏
t=1

p(st+1 | st)
n∏
t=1

p(xt | st)



2.3 Exercise: When to Use HMMs (Source: CMU)

For each of the following scenarios, is it appropriate to use a Hidden Markov Model? Why or why
not? What would the observed data be in each case, and what would the hidden states capture?

1. Stock market price data
2. Recommendations on a database of movie reviews
3. Daily precipitation data in Boston
4. Optical character recognition for identifying words

Solution

1. Stock market price data: Yes, an HMM is appropriate since stock market data is time-
dependent. Observed data: stock prices listed on exchanges. Hidden states: true value of
the stock, perhaps a combination of company policies, growth potential, economic conditions,
etc.

2. Recommendations on a database of movie reviews: No, an HMM would not be appropriate
since we don’t expect user preferences to change much over time.

3. Daily precipitation data in Boston: Yes, precipitation today is very likely to affect the chance
of precipitation tomorrow. Observed data: amount of precipitation each day. Possible hidden
states: true weather conditions, such as humidity or chance of rain.

4. Optical character recognition, where we are identifying words: Yes, word recognition is very
dependent upon the sequence of characters. Observed data: image pixels of written char-
acters. Hidden states: the true character represented (think MNIST from the last theory
pset).

End Solution

2.4 Parameterization

• θ ∈ Rc: defines the prior distribution over initial hidden states

• T ∈ Rc×c: transition matrix where Tkj is the probability of transitioning from Sk to Sj

• {π}ck=1: conditional probabilities of observations given hidden states such that p(xt = Oj |st =
Sk; {π}) = πkj . ∀k πk ∈ Rm.

First, we need to estimate the parameters from the data, which we can do with a variant of EM.
Then, with our trained HMM, we are able to perform several inference tasks on our data.

2.5 EM for HMMs

Given data points {xi}Ni=1 defined by sequences (xi1, . . . , x
i
n) of length n represented as row vec-

tors, we want to infer the parameters {T,θ, {πk}}. Had we been given the true states, we could
easily compute joint probability p(xi, si) and write the complete-data log likelihood, and maximize
with respect to the parameters. Instead, we need to estimate state distributions and parameters
iteratively.



2.5.1 Forward-Backward Algorithm

The HMM model is characterized by the joint distribution p(s1, . . . , sn,x1, . . . ,xn), which means
that many of our training and inference tasks require marginalization to obtain conditionals. Thus,
naive algorithms can be expensive (they require lots of nested summations over states), and we use
EM instead. We define the recurrence relations αt(st) and βt(st) in the E-Step:

• αt(st) represents the joint probability of observations 1, . . . , t and state t. αt can be defined
in terms of αt−1. We moove forwards through the sequence to calculate the α’s

• βt(st) represents the joint probability of observations t + 1, . . . , n conditioned on state t. βt
can be defined in terms of βt+1. We move backwards through the sequence to calculate the
β’s.

(a) alpha (b) beta

Note that the probabilities we use for calculating α and β are given by the parameters that we fix
in the E-Step.

∀st : αt(st) =

{
p(xt | st)

∑
st−1

p(st | st−1)αt−1(st−1) if 1 < t ≤ n
p(x1 | s1)p(s1) o.w.

∀st : βt(st) =

{ ∑
st+1

p(st+1 | st)p(xt+1 | st+1)βt+1(st+1) if 1 ≤ t < n

1 o.w.

2.5.2 Inference Patterns with α,β

The following patterns are useful for inference with a trained HMM as well as during the E-
Step:

• αt(st)βt(st) = p(x1, . . . ,xn, st) ∝ p(st|x1, . . . ,xn)

• joint of observations: p(x1, . . . ,xn) =
∑

st
αt(st)βt(st) (for any t)

• smoothing: p(st |x1, . . . ,xn) ∝ p(x1, . . . ,xn, st) = αt(st)βt(st)

• prediction: p(xn+1 |x1, . . . ,xn) ∝
∑

sn,sn+1
αn(sn)p(sn+1 | sn)p(xn+1 | sn+1)

• transition: p(st, st+1 |x1, . . . ,xn) ∝ αt(st)p(st+1 | st)p(xt+1 | st+1)βt+1(st+1)



2.5.3 E-Step

The goal of the expectation step is to compute the expected values of the hidden states given a
fixed set of parameters w = {T,θ, {πk}}. That is, we estimate the state distribution for si1, . . . , s

i
n

given xi.

Let the c × 1 vector qit = (qit1, . . . , q
i
tc) represent xi’s distribution over states for time t under the

current parameters. Let Qi
t,t+1 be the c × c matrix of transition probabilities under the current

parameters. Then

• α’s and β’s are defined in terms of fixed parameters.

• q’s are defined in terms of α’s and β’s

• Calculate qitk = p(sit = Sk|xi;w) for all t and k (use smoothing eq. just above)

• Calculate qit,t+1,k,` = p(sit = Sk, s
i
t+1 = S`|xi;w) (use transition eq. just above)

2.5.4 M-Step

Now we need to update our parameters to maximize the expected complete-data log likelihood
ES[ln p(x,S;w)]. Applying the appropriate Lagrange multipliers and maximizing with respect to
each of the parameters of interest, we recover the following update equations:

N̂1k =
N∑
i=1

qi1k (first period) and more generally N̂k =
N∑
i=1

n∑
t=1

qitk (all periods)

N̂−nk =

N∑
i=1

n−1∑
t=1

qitk (without last period)

N̂k` =
N∑
i=1

n−1∑
t=1

qit,t+1,k,` (transitions)

N̂kj =

N∑
i=1

n∑
t=1

qitkx
i
tj (observations)

θ̂k =
N̂1k

N
π̂kj =

N̂kj

N̂k

t̂k` =
N̂k`

N̂−nk



2.6 Exercise: Parameter Estimation in Supervised HMMs

You are trying to predict the weather using an HMM. The hidden states are the weather of the
day, which may be sunny or rainy, and the observable states are the color of the clouds, which can
be white or gray. You have data on the weather and clouds from one sequence of four days (note:
the hidden states are observed here):

Day Weather Clouds

1 Sunny White
2 Rainy Gray
3 Rainy Gray
4 Sunny Gray

1. Draw a graphical model representing the HMM.
2. Give the values of N,n, c and of the one-hot vectors s11, . . . , s

1
4,x

1
1, . . . ,x

1
4.

3. Estimate and interpret the values of the parameters θ,T, {πk}ck=1 using the MLE estimators
for the supervised HMM:

θ̂k =
N1k

N
, t̂kl =

Nkl

N−nk
, π̂kj =

Nkj

Nk

Nk =
N∑
i=1

n∑
t=1

sitk, N1k =
N∑
i=1

si1,k, N−nk =
N∑
i=1

n−1∑
t=1

sitk

Nkl =

N∑
i=1

n−1∑
t=1

sit,ks
i
t+1,l, Nkj =

N∑
i=1

n∑
t=1

sitkx
i
tj

Solution

1.

(all nodes are observed)

2. N = 1, the number of sequences observed
n = 4, the length of the sequences
c = 2, the number of states a hidden state can take
s11 = [1 0]>, s12 = [0 1]>, s13 = [0 1]>, s14 = [1 0]>

x1
1 = [1 0]>,x1

2 = [0 1]>,x1
3 = [0 1]>,x1

4 = [0 1]>

3. θ̂ = [1 0]>, the distribution of the weather for the initial state

T̂ =

[
0 1
1
2

1
2

]
, the transition probabilities for the weather

π̂1 = [12
1
2 ]>, the distribution of cloud colors on sunny days

π̂2 = [0 1]>, the distribution of cloud colors on rainy days

End Solution



2.7 Exercise: EM for HMMs

You are trying to model a toy’s state using an HMM. At each time step, the toy can be active (state
1) or inactive (state 2), but you can only observe the color of the indicator light, which can be red
(observation state 1) or green (observation state 2). You have collected data from one sequence:

Time Light

1 Green
2 Red
3 Green

You initialize your EM with θ = [12
1
2 ]>,T =

[
2
3

1
3

1
3

2
3

]
,π1 = [14

3
4 ]>,π2 = [34

1
4 ]>.

1. Compute α1, α2, α3, β1, β2, β3 for the forward-backward algorithm using the initial parameter
values.

2. How is q1
t defined? Compute the values of q1

1,q
1
2 using the α and β values.

3. How is Q1
t,t+1 defined? Compute the value of Q1

1,2 using the α and β values.

During EM, at one point you obtain the following values after the E step:

q1
1 =

[
2

3

1

3

]>
, q1

2 =

[
1

3

2

3

]>
, q1

3 =

[
2

3

1

3

]>

Q1
1,2 =

[
1
6

1
2

1
6

1
6

]
, Q1

2,3 =

[
1
6

1
6

1
2

1
6

]
1. Use the above values to compute N̂k, N̂kl, N̂kj .
2. Complete the M step by updating the parameters θ,T,π1,π2.

Solution

1. Using the recursive defintions for α, β and the current values of θ,T,π1,π2:

α1(s
1
1) =

{
3
8 s11 = active
1
8 s11 = inactive

α2(s
1
2) =

{
7
96 s12 = active
15
96 s12 = inactive

α3(s
1
3) =

{
29
384 s13 = active
37

1152 s13 = inactive

β3(s
1
3) =

{
1 s13 = active

1 s13 = inactive

β2(s
1
2) =

{
7
12 s12 = active
5
12 s12 = inactive

β1(s
1
1) =

{
29
144 s11 = active
37
144 s11 = inactive

2. q1tk is the probability that s1t is Sk (given the observations), and q1tk = p(s1t = Sk | x1;w) ∝
αt(Sk)βt(Sk). Then q1

1 ∝ [ 87
1152

37
1152 ]>, so q1

1 = [ 87
124

37
124 ]>. Also, q1

2 ∝ [ 49
1152

75
1152 ]>, so

q1
2 = [ 49

124
75
124 ]>.



3. q1t,t+1,k,l is the probability that s1t is Sk and s1t+1 is Sl (given the observations), and q1t,t+1,k,l =

p(s1t = Sk, s
1
t+1 = Sl | x1;w) ∝ αt(st)p(st+1 | st)p(xt+1 | st+1)βt+1(st+1). Then

Q1
1,2 ∝

[
42

1152
45

1152
7

1152
30

1152

]
so

Q1
1,2 =

[
42
124

45
124

7
124

30
124

]
4.

For N̂k: N̂1 =
5

3
, N̂2 =

4

3

For N̂kl: N̂1,1 =
1

3
, N̂1,2 =

2

3
, N̂2,1 =

2

3
, N̂2,2 =

1

3

For N̂kj : N̂1,1 =
1

3
, N̂1,2 =

4

3
, N̂2,1 =

2

3
, N̂2,2 =

2

3

5. θ = [23
1
3 ]>

T =

[
1
3

2
3

2
3

1
3

]
π1 = [15

4
5 ]>

π2 = [12
1
2 ]>

End Solution



3 Kalman Filters

Now consider the following dynamical system model:

zt+1 = Φzt + εt

xt = Azt + γt

where z are the hidden variables and x are the observed measurements. Φ and A are known
constants, while ε and γ are random variables drawn from the following normal distributions:

εt ∼ N (µε, σ
2
ε )

γt ∼ N (µγ , σ
2
γ)

This is called a (one-dimensional) linear Gaussian state-space model. It is closely related to an
HMM – try drawing out the graphical model! – but here the hidden states and the observations
are now continuous and normally distributed. Linear Gaussian state-space models have convenient
mathematical properties and can be used to describe noisy measurements of a moving object (e.g.
missiles, rodents, hands), market fluctuations, etc.

The Kalman filter is an algorithm to perform filtering in linear Gaussian state-space models, i.e.
to find the distribution of zt given observations x1, ..., xt. The distribution of zt |x1, ..., xs will be
N (µt|s, σ

2
t|s). If we start with µt−1|t−1 and σ2t−1|t−1, the algorithm tells us to

1. Define the distribution of zt |x1, ..., xt−1 by computing µt|t−1 and σ2t|t−1. This is called the
prediction step.

2. Define the distribution of zt |x1, ..., xt by computing µt|t and σ2t|t. This is called the update
step.

The Kalman filter alternates between prediction and update steps, assimilating observations one
at a time. It requires one forward pass through the data, and is analogous to obtaining the α’s in
an HMM.


