CS 181 Spring 2020 Section 8
Solution

1 Bayesian Networks

A Bayesian network is a graphical model that represents random variables and their dependencies
using a directed acyclic graph. Bayesian networks are useful because they allow us to efficiently
model joint distributions over many variables by taking advantage of the local dependencies. With
Bayesian networks, we can easily reason about conditional independence and perform inference on
large joint distributions.

1.1 D-separation rules

Let X 4 and Xp denote sets of variables that we are interested in reasoning about. X4 and Xpg are
d-separated by a set of evidence X if every undirected path from X4 to Xp is “blocked” by Xg.
A path is blocked by evidence X if EITHER:

1. There is a node Z with non-converging arrows on the path, and Z € Xg.

The shaded node indicates an evidence node.
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2. There is a node Z with converging arrows on the path, and neither Z nor its descendants are
in XE

Y

Make sure to check every undirected path from X4 to Xp. Within each path, only one node Z
needs to fall under one of the two cases described above for the whole path to be blocked.

If X4 and Xp are d-separated by X (i.e., blocked), then X4 and X g are conditionally independent
given XE (XA 1 XB ’XE)



2 Network Basics

A patient goes to the doctor for a medical condition, and the doctor suspects 3 diseases as the cause
of the condition. The 3 diseases are D1, Do, and D3, and they are independent from each other
(given no other observations). There are 4 symptoms S1, Sz, S3, and Sy, and the doctor wants to
check for presence in order to find the most probable cause. S; can be caused by Di, Ss can be
caused by D7 and Ds, S3 can be caused by Dy and Ds3, and Sy can be caused by Ds. Assume all
random variables are Bernoulli, i.e. the patient has the disease/symptom or not.

e Q: Draw a Bayesian network for this problem with the variable ordering D1, D5, D3, S1, S, S3, S4.

A': Note that there are many valid networks (depending on the chosen variable ordering), some
more efficient (i.e. requiring fewer parameters) than others. Here is a compact representation
that comes from variable ordering D1, Dy, D3, S1, S2,S3,54. (Recall that all dependencies to
earlier variables need to be indicated with edges).

e Q: Write down the expression for the joint probability distribution given this network.
A: p(D17 D27 D37 Sl> 527 S3a S4)
= p(D1)p(D2)p(Ds3)p(S1|D1)p(S2| D1, D2)p(Ss| D1, D3)p(S4| Ds3)

e Q: How many parameters are required to describe this joint distribution?

A:
’ Conditional Probability Table | Number of Parameters
p(D1) 1
p(D2) 1
p(Ds) 1
p(S1|D1) 2
p(S2|D1, D2) 4
p(Sg|D1, Dg) 4
p(S4|D3) 2

Total Number of Parameters 15

e Q: How many parameters would be required to represent the CPTs in a Bayesian network if
there were no conditional independences between variables?

A: The network would be structured as a clique, and considering order D1, Do, D3, S1, .52, 53, S4,
the number of parameters for the CPTs would be 1 +2 +4 + 8 + 16 + 32 + 64 = 127.



Conditional Probability Table | Number of Parameters

p(D1) 1
p(D2|Dy) 2
p(D3‘D1,D2) 4
p(Sl|D1,D2,D3) 8
p(Sg’Dl,DQ,Dg,,Sl) 16
p(Sg’Dl,DQ,Dg,Sl,SQ) 32
p(S4’D1,D2,D3,Sl,S2,Sg) 64

Total Number of Parameters ‘ 127

(We can see there is no saving relative to specifying the joint probability distribution directly,
which would require 27 — 1 = 127 numbers.)

Q: What diseases do we gain information about when observing the fourth symptom (S4 =
true)?

A: We have independence relations (D1, Ss) (since the path is blocked without observing
S3 and I(D2,Sy) (since the path is blocked at both So and S3). What is left is dependence
between D3 and S4. Thus, we only learn information about Ds.

Q: Suppose we know that the third symptom is present (S5 = true). What does observing
the fourth symptom (S4 = true) tell us now?

A: With S3 = true, observing Sy = true now also gives us information about D; (via
‘explaining away’, or using d-separation, because the D; to S path is no longer blocked at
S3). We still don’t learn any information about Dy because the Dy to Sy path remains blocked
at SQ.



3 D-Separation

As part of a comprehensive study of the role of CS 181 on people’s happiness, we have been col-
lecting important data from students. In an entirely optional survey that all students are required
to complete, we ask the following highly objective questions:

Do you party frequently [Party: Yes/No|?

Are you smart [Smart: Yes/No]?

Are you creative [Creative: Yes/No]|?

Did you do well on all your homework assignments? [HW: Yes/No]
Do you use a Mac? [Mac: Yes/No]

Did your last major project succeed? [Project: Yes/No]

Did you succeed in your most important class? [Success: Yes/No]
Are you currently Happy? [Happy: Yes/No]

After consulting behavioral psychologists we build the following model:

Q: True or False: Party is independent of Success given HW.

A: False; there is a path that is not blocked: Party — HW — Smart — Project — Success
has neither a converging arrows not in the set of evidence or a non-converging arrows in the set.

e Q: True or False: Creative is independent of Happy given Mac.
A: False; there is a path that is not blocked: Creative — Project — Success — Happy

Q: True or False: Party is independent of Smart given Success.

A: False; there is a path that is not blocked between Party and Smart: the path Party —
HW — Success is not blocked because the converging arrows node at HW has a descendant
(Success) in the evidence.

Q: True or False: Party is independent of Creative given Happy.



A: False; there is a path that is not blocked between Party and Creative through the con-
verging arrows at Happy. There are actually multiple not-blocked paths — can you find them?

e Q: True or False: Party is independent of Creative given Success, Project and Smart.

A: True! All paths between Party and Creative are blocked. Working from Party, the
paths that come through Happy are blocked there (converging arrows, no evidence). Those
that come through HW and Smart are blocked at Smart. Those that come through
HW, Success, Project are blocked at Project.



4 Inference
Consider the following Bayesian network, where all variables are Bernoulli.

p(B = true) = 0.5

p(A = true) = 0.2 a @ @ = true) = 0.8

A B ‘ p(D = true|A, B) B C ‘ p(E = true|B,C)
F F 0.9 F F 0.2
F T 0.6 F T 0.4
T F 0.5 T F 0.8
T T 0.1 T T 0.3

e Q: What is the probability that all five variables are simultaneously false?
A:

= (0.8)(0.5)(0.2)(0.1)(0.8)
= 0.0064

e Q: What is the probability that A is false given that the remaining variables are all known
to be true?

A: For this part, we need to calculate p(=A|B,C, D, E).

By the definition of conditional probability,

p(_'AvBaCaDaE) _ p(_‘A,B,C,D,E)

pCAIB.C.D.E) = S5 5 b E) ~ P(oAB.C,D,E) + P(A, B,C.D, E)

The joint probabilities p(—A, B,C, D, E) and p(A, B,C, D, E) can be computed as:

p(=4, B,C, D, E) = p(=A)p(B)p(C)p(D|-A, B)p(E|B, C)
= (0.8)(0.5)(0-8)(0.6)(0.3)
= (0.05760)
p(4, B,C, D, E) = p(A)p(B)p(C)p(D|A, B)p(E|B, C)
= (0.2)(0.5)(0-8)(0.1)(0.3)
= (0.00240)



Finally, we can plug this in to get:

.05760 _
05760 + .00240

p(_'A’B,C,D7E) = .96



