
CS 181 Spring 2020 Section 7
Mixture Models, EM, PCA

1 Mixture Models

1.1 Review of notation

Vectors are denoted using bold letters. In the statement,

“Assume you have observed data {xi}N
i=1.”

This means there are some constant N distinct observations. Each observation xi is a
vector, where each component of the vector represents each feature.

When used to define distributions, the semicolon means that you can plug in the deter-
ministic value of the variable after the semicolon into your expression for the distribution.
Typically the variables that appear after the semicolon are unknown parameters for which
you have some fixed estimate of what they may be.

For example, say you are given that random variable x ∼ N(0, σ), where σ is unknown.
You believe that σ = 2. Then

p(x; σ) ∼ N(0, 2)

When reading mathematical expressions, pay close attention to which variables are ran-
dom (random variables can be observed or unobserved), and which variables are deterministic
constants.

1.2 Motivation

Textbook sections 9.1, 9.2.

A mixture model is a type of probabilistic model for unsupervised learning.

Assume you have observed data {xi}N
i=1.

Mixture models are used when you have reason to believe that each individual has an
unobserved discrete latent variable zi that determines the data generating process. Say
there are C possible values for each zi, denoted {Ck}c

k=1 where each Ck is a one-hot en-
coded vector of length C.

Assume that each data point xi is generated as follows:

• Sample latent class zi from θ, the categorical distribution over {Ck}c
k=1 s.t.

p(z = Ck; θ) = θk. Call this sampled latent class CS.



• Given that zi = CS, sample xi from the distribution

p(x|z = CS; w)

This conditional distribution is a modeling assumption (which means we will give
it to you in this class), and is specified using unknown parameters w.

For example, we may assume that x ∼ p(x|z = Ck) = N (x; µk, Σk), where µk, Σk
are the unknown mean and covariance of the kth cluster. (See Section 2.4 for more
about Gaussian mixture models!)

Example: Say you have a dataset containing weights from a random sample of animals
in a pet store. Each xi is the animal’s weight. The latent variables zi represent what
kind of animal is being weighed, so the possible values {C1, C2, ..., CC}may represent the
categories cat, dog, bird, etc. In your model, you also use the assumption that p(x|z =
Ck; w) ∼ N(µk, σk).

Exercise 1. In this example, can you give an intuitive explanation of what vector θ represents?
What does it mean that p(x|z = Ck; w) ∼ N(µk, σk)?

Solution. θ represents the proportion of each type of animal in the pet store. For example,
if θk = 0.2 and Ck represents dogs, then 20% of all animals in the pet stores are dogs (or, if
an animal is chosen at random, there is a 20% chance it will be a dog).

This class-conditional distribution means that for each type of animal, the weights of the
animal are distributed normally with a fixed mean and variance for that animal.

2 Expectation Maximization

Textbook sections 9.3, 9.4.

Expectation maximization is a general technique for maximum-likelihood estimation used
primarily for models with latent variables. Here we will show how to use EM to train a
mixture model, but EM is also used for a variety of other models!

Consider a generative mixture model consisting of a latent variable z from a distribution
p(z; θ) and an observed variable x, such that we draw x from a distribution p(x|z; w).

We have 2 goals:



1. To compute the MLE for w and θ, i.e. the values of w, θ that maximize p(x; w, θ).

2. To estimate the latent variable zi corresponding to a particular xi, which in this case
means maximize the distribution p(zi|xi; w, θ).

Goal 2 is easy once we have an estimate of the MLE for w, θ, because we can apply Bayes
rule:

p(z|x; w, θ) ∝ p(x|z; w, θ)p(z; w, θ)

p(z|x; w, θ) ∝ p(x|z; w)p(z; θ) (1)

2.1 Why EM?

The likelihood of the data can be written as

p(x; w, θ) = ∑
z∈Z

p(x, z; w, θ)

Unfortunately calculating the MLE is often computationally intractable, because the log-
likelihood is:

log p(x; w, θ) = log ∑
z∈Z

p(x, z; w, θ) (2)

There is no closed form for the MLE of the log-likelihood because it is the log of a sum of
expressions. We know the form of the model p(x, z; w, θ), but in general we cannot solve
for the (w, θ) which maximize the likelihood p(x; w, θ) in closed form.

2.2 The EM Algorithm

Since finding the MLE directly is difficult, we will use expectation maximization: an ap-
proximate iterative approach. The steps of the algorithm are:

1. Initialize w(0), θ(0) randomly.

2. Calculate the distribution q over z:

qi,k := p(zi = Ck|xi; w(t), θ(t)) ∝ p(xi|zi; w(t), )p(zi; θ(t)) (3)

3. Choose the value of w(t+1), θ(t+1) that maximizes the expected complete data log
likelihood (where the expectation is over the distribution calculated above):

w(t+1), θ(t+1) = argmax
w,θ

Eq [log p(x, z; w, θ)] (4)

4. Go back to step 2 until the log-likelihood estimate in step 3 converges.



2.3 Example: Coins

Consider a setup where we have 2 biased coins C1 and C2, where Pr(C1 = 1) = π1 and
Pr(C1 = 1) = π2. Data points xi are generated by:

• First, flip another biased coin Cz.

• If Cz is heads, then xi is the outcome of flipping C1.

• Otherwise, if Cz is tails, then xi is the outcome of flipping C2.

We wish to do inference to learn the unknown parameters of the coins (π1, π2), but the
only data we’re given is the outcomes of the flips (the xis).

Exercise 2. In this example, what is a reasonable choice for the latent variables zi?

Solution. The latent variable zi should represent whether coin C1 or C2 was flipped to
generate xi.

This choice is reasonable because we know the distribution p(xi|zi; , θ) when zi is the
outcome of the first coin flip of Cz. To be consistent with Textbook Example 9.4.5, which
uses the same model for the mixture of multinomials, we’ll let xi be a one-hot vector s.t.
xi1 = 1 if the result of coin flip i was heads; xi2 = 1 otherwise. zi is a one-hot vector (of
size 2) indicating which coin was flipped to generate xi.

We’ll denote the vector of probabilities for Cz used to choose between coins as θ ∈ R2,
where θ1 is the probability we’ll pick C1, and θ2 for C2. Finally, we’ll use π1, π2 ∈ R2 to
denote the biases for each coin, where π1 is the vector of probabilities for C1, etc. This
is exactly the same setup as in class for a mixture of multinomials; here we only have
two multinomials here (coins 1 and 2) and they have 2 outcomes (heads or tails). We let
w := {θ, π}.

Let’s use expectation maximization to learn parameters w := {θ, π}!

First we note that we can calculate qi from w(t) by writing:

qi =

[
p(zi = C1|xi; w(t))

p(zi = C2|xi; w(t))

]
(5)

∝
[

p(xi|zi = C1; w(t))p(zi = C1; w(t))

p(xi|zi = C2; w(t))p(zi = C2; w(t))

]
(6)

∝
[
(π11)

xi1(π12)
xi2θ1

(π21)
xi1(π22)

xi2θ2

]
(7)



We also have the data log-likelihood as

log p(xi, zi; w) = log p(xi|z; w)p(z; w) (8)

= log
2

∏
k=1

(
θk

2

∏
j=1

π
xij
kj

)zik

(9)

= zi1 (log θ1 + xi1 log π11 + xi2 log π12) (10)
+ zi2 (log θ2 + xi1 log π21 + xi2 log π22) (11)

log p(x, z; w) =
n

∑
i=1

log p(xi, zi; w) (12)

Now expand the expected complete data log-likelihood:

Lc = Ez|x;w

[
n

∑
i=1

log p(xi, zi; w)

]
(13)

= Ez|x;w

[
n

∑
i=1

log p(zi; w) + log p(xi|zi; w)

]
(14)

=
n

∑
i=1

Ez|x;w [log p(zi; w) + log p(xi|zi; w)] (15)

=
n

∑
i=1

c

∑
k=1

qik

(
log θk +

2

∑
j=1

xij log πkj

)
(16)

=
n

∑
i=1

qi1 (log θ1 + xi1 log π11 + xi2 log π12) + qi2 (log θ2 + xi1 log π21 + xi2 log π22)

(17)

Now we can use these derivations to do expectation maximization!:

1. Initialize w(0) randomly.

2. Use w(t) to calculate the vector of probabilities qi for the distribution of each zi (eq.
7).

3. Calculate the approximate expected likelihood using qi and w(t) (eq. 11).

This step is not strictly necessary for calculating updates, but can be helpful for a
variety of purposes, including debugging and testing convergence. Note that we
need both q and w(t) to get a value here.

4. Use q to calculate an updated set of parameters w(t+1) by maximizing the expected
likelihood as a function of w (eq. 17). Note that here we do not use w(t).



During optimization we need to enforce that ∑k θk = 1 and that ∑j πkj = 1, so that
the distributions parameterized by θ and π are valid.

This constraint can be enforced using Lagrange Multipliers, but in the 2-dimensional
case we can substitute θ2 = 1− θ1 and πk2 = 1− πk1:

Lc =
n

∑
i=1

qi1 (log θ1 + xi1 log π11 + xi2 log(1− π11)) (18)

+qi2 (log(1− θ1) + xi1 log π21 + xi2 log(1− π21)) (19)

And then optimize w.r.t. θ1, π11, π21:

∂Lc

∂θ1
=

n

∑
i=1

(
qi1

θ1
− qi2

1− θ1

)
= 0 (20)

∂Lc

∂π11
=

n

∑
i=1

qi1

(
xi1

π11
− xi2

1− π11

)
= 0 (21)

∂Lc

∂π21
=

n

∑
i=1

qi2

(
xi1

π21
− xi2

1− π21

)
= 0 (22)

From here we can solve for the optimal value of w (i.e. θ1, π11, π22), and set w(t+1) =
argmaxw Ez|x;wLc.

Note: Above we show the derivation of all steps of the algorithm, but once you know the
closed form expression for w(t+1), the steps of the algorithm are really just initialization,
calculate the distribution qi from w(t), and then calculate w(t+1) from q. All the difficult
work is in deriving the update equations.

In more complicated models, the optimal w(t+1) may not have a closed form solution; in
these cases, instead we can do gradient descent to calculate the optimal value.

Exercise 3. Derive the closed form updates for θ(t), π(t) from the steps above.

Solution.

θ
(t)
k ←

∑n
i=1 qik

n

π
(t)
k ←

∑n
i=1 qikxi

∑n
i=1 ∑m

j=1 qikxij



Once we have an estimate for the MLE w, we can use it to do prediction of hidden states
for a new incoming coin flip, using step 2 from above. So, given a new coin flip, we can
predict whether it can from the first or the second coin.

Our model may not be very good, since in particular it is impossible to tell the difference
between having one coin chosen with high probability with π1 = 0.5 (and another picked
almost never with π2 = 0.1) and two equally likely coins with biases 0.4 and 0.6. This
problem is due more to the data setup rather than the method, so let’s try another prob-
lem:

Exercise 4. Consider the following data generation process: the setup is the same as above, but
instead of flipping the chosen coin once, we flip it 10 times before choosing a new coin.

1. Find an appropriate choice of latent variables zi and calculate the distribution of zi given the
data xi,j (where i iterates over the sets of 10 coin flips, and j ∈ [1, 10]) and an estimate for θ.

2. Find the expression for the expected complete data log-likelihood

3. Find the closed form update equations for θ(t), and compare them to the result from Exercise
1.

Solution.

1. Here again we can use zi to denote the 1-hot choice of the chosen coin, this time
used for all 10 of the flips. The distribution of zi is again proportional to the prior
times the likelihood, which is:

p(zi|xi, w) ∝ p(xi|zi, w) · p(zi|w) =
c=2

∏
k=1

(
10

∏
j=1

2

∏
l=1

π
xijl
kl

)zik

·
c=2

∏
k=1

θ
zik
k

where xijl is the indicator variable for the jth coin in the ith set of 10 being in class l
(in this case, heads or tails).

2. The expected complete data loglikelihood is similar to the above case:

Lc =
n

∑
i=1

c=2

∑
k=1

qik

(
log θk +

10

∑
j=1

2

∑
l=1

xijl log πkj

)

3. In fact, θ satisfies the same expression as before, so the update is the same:

θ
(t)
k ←

∑n
i=1 qik

n
The only thing that has changed here is the matrix q. Remember that qik is propor-
tional to the prior probability of choosing the coin, times the likelihood. Here the
likelihood term is stronger (because we see more evidence per latent variable) so we
can expect this estimate to be less noisy, and thus our estimation of θ is less noisy.





2.4 Example: Gaussian Mixture Modeling

Textbook section 9.5.

The setup is that we have data xi ∈ Rm and a latent variable zi (corresponding to the
cluster that the point is drawn from) such that x ∼ p(x|z = Ck) = N (x; µk, Σk), where
µk, Σk are the mean and covariance of the kth cluster. The choice of cluster is drawn from
a categorical distribution with probabilities θ ∈ Rc. We are able to observe the data xi and
want to find the cluster centers and their covariances.

Following the same format as above, the steps of EM inference applied to this problem
are:

1. Randomly initialize θ, {µk, Σk}k.

2. Next, calculate the new distribution of each zi:

qik = p(zi = Ck|xi) ∝ θkN (xi; µk, Σk) (23)

This is our new estimate of the distribution of zi given the data and our estimate for
θ, {µk, Σk}k.

3. Find the expected complete data log-likelihood:

EZ [L] = EZ[
n

∑
i=1

ln(p(xi, zi; θ, {µk, Σk}k))] (24)

=
n

∑
i=1

c

∑
k=1

qik ln θk + qik lnN (xi; µk, Σk) (25)

and then optimize it for each of the parameters θ, {µk, Σk}k. However, we need to be
careful to remember constraints: since ∑k θk = 1, we must use Lagrange multipliers
to optimize the parameters. We get the following update equations:

θ
(t+1)
k =

∑n
i=1 qik

n
(26)

µ
(t+1)
k =

∑n
i=1 qikxi

∑n
i=1 qik

(27)

Σ
(t+1)
k =

∑n
i=1 qik(xi − µ

(t+1)
k )(xi − µ

(t+1)
k )>

∑n
i=1 qik

(28)



3 Principal Component Analysis

Textbook chapter 7.

3.1 Motivation

In many supervised learning problems, we try to find rich features that increase the ex-
pressivity of our model. In practice, this often involves using basis functions to transform
model input into a higher dimensional space (eg. given data x, using x and x2 as features,
or using features learned by a neural network).

However, sometimes we want to reduce the dimensionality of our data.

Exercise 5. Why would we want to reduce the dimensionality of our data? Can you think of
example cases?

Solution. Solution: There can be several reasons:

• Fewer features are easier to interpret: we might want to know why our model out-
puts a certain diagnosis, and only some of the patient record details will be relevant.

• Models with fewer features are easier to handle computationally.

• Our data might be arbitrarily high-dimensional because of noise, so we would like
to access the lower-dimensional signal from the data.

One method for dimensionality reduction through linear projections of the original data
is PCA. When reducing the dimensionality of our data from m to d where d < m, PCA can
be interpreted as minimizing the reconstruction loss of projecting data onto d basis vec-
tors, or as maximizing the variance in data that can be explained by d basis vectors.

3.2 Finding the lower dimensional representation

To perform PCA, or project each data point x: (m× 1) to z: (d× 1),

1. Standardize the data by subtracting the mean of each feature from each data point.
Steps 2 - 5 will be performed on the standardized data X: (n×m).

2. Calculated the normalized feature covariance matrix:

S = (
n

∑
i=1

xix>i ) = X>X



3. Decide how many dimensions d out of the original m that we want to keep in the
final representation. For visualizations, often this will be d = 2 or d = 3.

4. Find the d largest eigenvalues of S. The m× 1 eigenvectors (u1, . . . , ud) correspond-
ing to these eigenvalues will be our lower-dimensional basis.

5. Thus, we reduce the dimensionality of a data point x by projecting it onto this basis
- we combine the eigenvectors into the m× d matrix U, and compute

〈u>1 x, u>2 x, . . . , u>d x, 0〉 = U>x = z

z is called the reconstruction coefficients where Uz is the reconstruction of x.



Exercise 6. You are given the following data set:

x1 =

[
1
−1

]
, x2 =

[
1
2

]
, x3 =

[
−2
−1

]
You would like to use PCA to find a 1-dimensional representation of the data.

1. Plot the data set.
2. Compute the feature covariance matrix S.
3. You find that S has eigenvector [−1 1]> with eigenvalue 3 and eigenvector [1 1]> with

eigenvalue 9. What is the (normalized) basis vector u1 of your 1-dimensional representa-
tion? Add the basis vector u1 to your plot.

4. Compute the coefficients z1, z2, z3. Add the lower-dimensional representations
z1u1, z2u1, z3u1 to your plot. Based on your plot, what is the relationship between ziu1
and xi with respect to the new basis?

5. Based on your plot, what would happen if you chose the unused eigenvector to be your basis
vector?

Solution. 1.

•

•

•

2.

S = X>X =

 1 −1
1 2
−2 −1

>  1 −1
1 2
−2 −1

 =

[
6 3
3 6

]

3. We select the eigenvectors with the largest eigenvalues for our basis, so our ba-
sis will contain a scalar multiple of [1 1]>. Normalizing [1 1]> gives us that u1 =

[
√

2
2

√
2

2 ]>.



•

•

•

u1

4.

z1 = x>1 u1 = 0, z2 = x>2 u1 =
3
√

2
2

, z3 = x>3 u1 = −3
√

2
2

The open circles in the plot represent the lower-dimensional representation:

•

•

•

◦

◦

◦

u1

ziu1 is the projection of xi onto the basis vector.

5. If we chose [−1 1]> to be the basis of our new representation, then the representation
would capture less of the variance in the data. For example, x2 and x3 would be
represented by the same point.
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