
CS 181 Spring 2019 Section 3 Notes
(Model Selection)

1 Model Selection

1.1 Bias-Variance Decomposition

Bias-variance decomposition is a way of understanding how different sources of error
(bias and variance) can affect the final performance of a model. A tradeoff between bias
and variance is often made when selecting models to use, and can be informed by the
results of the bias-variance decomposition.

1.2 Exercise: Bias-Variance Decomposition

Decompose the generalization error into the sum of bias squared (systematic error), vari-
ance (sensitivity of prediction), and noise (irreducible error) by following the steps below
(try not to peek at your notes!). You will find the following notation useful:
• hD: The trained model, hD : X 7→ R.
• D: The data, a random variable sampled D ∼ F n.
• x: A new input.
• y: The true result of input x. Conditioned on x, y is a r.v. (may be noise.)
• y: The true conditional mean, y = Ey|x[y].
• h(x): The prediction mean, h(x) = ED[hD(x)].

1. Start with the equation for the generalization error:

ED, y|x[(y − hD(x))2]

and use the linearity of expectation to derive an equation of the form:

Ey|x[(y − y)2]︸ ︷︷ ︸
noise

+ED[(y − hD(x))2]︸ ︷︷ ︸
bias+var

+ ∗ ∗ ∗ ∗ ∗ ∗∗ (1)

where the *s denote a third term. What is this term? (Hint: add and subtract y).

2. Show that this third term is equal to 0 (Hint: take advantage of the fact that y and
hD(x) do not depend on y|x.



3. The first term in (1) is the noise. We therefore want to decompose the second term
into the bias and variance. Again, using the linearity of expectation, re-write the
second term in equation (1) in the form:

(y − h(x))2︸ ︷︷ ︸
bias squared

+ED[(h(x)− hD(x))2]︸ ︷︷ ︸
variance

+2ED[(y − h(x))(h(x)− hD(x))] (2)

show that the third term is equal to 0.

4. Plug the results of part 3 back into (1) to show that we have decomposed the error
into noise, bias, and variance.

Solution:



1.3 Exercise: More Bias and Variance

We consider a very simple example where the data is a univariate Gaussian, with xi ∼
N (µ, 1) with known variance but unknown mean. In this case, there are no features, and
the hypothesis doesn’t depend on x. A very simple hypothesis, for example, is the sample
mean

hD = x =
1

n

n∑
i=1

xi

for data (x1, . . . , xn) ∈ Rn. Calculate the bias and variance for the following two hypothe-
ses:

1. Estimate 1: Use the same mean of data D.
2. Estimate 2: Use the constant hypothesis, 0.

Solution:

1.4 Limitations

Although the bias-variance decomposition provides some interesting insights into model
selection from a complexity perspective, it has limited practical value, as it is based on
averages of independent data sets drawn from some distribution. In practice, however,
we only have a single observed data set. The bias and variance can be estimated through
“bootstrap” style approaches where we sample with replacement to form additional data
sets, but still— why not more directly compute validation loss and use this to find the
best model? The main interest in the bias-variance decomposition is to gain conceptual
insight.



1.5 Validation Set

We can do model selection through a validation set, data that are separate from our train-
ing set used to fit the regression. By separating our full dataset into a training set and
validation set (say in a 90/10 split), we can use our validation set to check our model’s
generalization ability on data it was not trained on. When tuning model parameters, we
can train our models with different parameters on the training set and check their perfor-
mance on the validation set in order to find the optimal value for the parameter.

Note that this is a general approach that is highly recommended for any sort of model
selection. In the context of regularization, you would use a validation set to fit the regu-
larized linear model using multiple values of λ and choose the one that results in the best
performance.

1.6 Cross Validation

Cross validation is a more sophisticated technique for obtaining validation losses. Instead
of splitting our data once into a 90/10 training/validation set, in k-fold cross validation,
we split our data into k equal chunks. For each chunk, we set it to be the validation set and
use the rest of the data to fit our model. Then, we obtain a validation loss on our current
chunk, and averaging over the 10 chunks gives the final validation loss. Cross validation
can also be used to find optimal parameter values as described in the previous section - we
simply have an improved way of computing validation losses by averaging. This reduces
the variance in the resulting validation loss, as each example is used in estimating the
validation loss.

See this notebook for an interactive demo of how cross validation could be used.

1.7 Ensemble Methods

Ensemble methods take advantage of multiple models to obtain better predictive accu-
racy than with a single model alone. The two most common types of ensemble methods
are bagging and boosting.

1.7.1 Bootstrap aggregating (Bagging)

In bagging, we fit each individual model on a random sample of the training set. To
predict data in the test set, we either use an average of the predictions from the individual
models (for regression) or take the majority vote (for classification). As an average of
models, bagging tends to decrease the variance of a learning algorithm without changing

https://colab.research.google.com/drive/1hZcd_oV8o81y3jXCHp4xpfeDOJO76MPh


the bias. An example is a random forest, which trains multiple decision trees and takes
the average prediction from the ensemble of learned models.

1.7.2 Boosting

In boosting, we train the individual models sequentially. Thus, after training the ith model
on a sample of the training set, we train the (i+1)th model on a new sample based on the
performance of the ith model. Examples classified incorrectly in the previous step receive
higher weights in the new sample, encouraging the new model to focus on those exam-
ples. During testing, we take a weighted average or weighted majority vote of the mod-
els’ predictions based on their respective training accuracies on their reweighted training
data (i.e. higher models have larger weights). A common example is the Adaboost algo-
rithm.

1.8 Exercise: Model Selection Using Bias and Variance

You are given a data set containing information about a set of dogs. Your goal is to
model the weights of the dogs (the dependent variable) using the ages of the dogs (the
independent variable). You fit and evaluate three models using the same train-test split,
a linear model, a quadratic model, and a cubic model. Below is a table of the train and
test accuracies.

Linear Quadratic Cubic
Train 0.60 0.82 0.93
Test 0.62 0.73 0.54

1. For each of the three models, would you choose to regularize the model? What
would be the effect of regularization?

2. For each of the three models, what would be the effect of adding more data and
why?

3. How would each of these models perform on a freshly drawn set of dogs? Assume
that the draws across both data sets are i.i.d. (i.e. using same breeds, etc. in both
data sets).

4. Which model do you think is the most appropriate one for this data (based on the
numerical results here, not using your intuition about dogs)?



Solution:



2 Regularization

2.1 Linear Regression

Suppose we have data {(xi, yi)}ni=1, with xi, yi ∈ R, and we want to fit polynomial basis
functions:

φ(x)> = [φ1(x) = 1, φ2(x) = x, . . . , φd+1(x) = xd]

h(x;w) = w>φ(x)

That is, we fit a degree d polynomial. With a small dataset and too high of a d, we get
overfitting. Obviously, this will generalize poorly to new data points. How can we solve
this problem?

2.2 Penalized Loss Function

Recall that the standard linear regression problem, known as ordinary least squares (OLS),
uses the following loss function (which is actually the mean squared error):

LOLS(D) =MSE =
n∑

i=1

(yi − h(xi;w))2

Regularization refers to the general practice of modifying the model-fitting process to
avoid overfitting and other potential problems like multicollinearity. Linear models are
typically regularized by adding a penalization term to the loss function. The penalization
term is simply any function p of the weights w scaled by a penalization factor λ. The loss
then becomes:

Lreg(D) =
n∑

i=1

(yi − h(xi;w))2 + λp(w)

There are some common choices for p(w) that will be discussed. They frequently leverage
the idea of a vector norm, where ||w||n represents the Ln-norm of the vector w for n ≥
1:

||w||n =

 |w|∑
i=1

|wi|p
1/p

2.3 LASSO Regression

One common choice for a penalization term is simply p(w) = ||w||. This is just the L1-
norm of the weights vector, which quite naively means that the penalization term here is



just the sum of the magnitudes of all the weights for the model. This form of regularized
regression is known as LASSO (Least Absolute Shrinkage and Selection Operator) regression.
The full modified loss is then:

LLASSO(D) =
n∑

i=1

(yi − h(xi;w))2 + λ||w||

There are some notable properties of LASSO regression. One main disadvantage is that it
does not have a closed-form solution, meaning that it cannot be analytically solved.

Concept Question: Why do you think LASSO has no closed-form solution?
Try to solve for it using the same process as for the OLS solution; what goes
wrong?

Rather, it needs to be numerically solved through an iterative process, which can be much
slower. However, it does have the benefit, as the name suggests, that it is good for variable
selection, meaning that coefficients might be “shrunk” directly to zero, which has intu-
itive interpretation that the variables are not meaningful in the model after regulariza-
tion.

2.4 Ridge Regression

Another solution to overfitting linear regression is through ridge regression, which mini-
mizes a modified least squares loss function:

L(D) =
n∑

i=1

(yi − h(xi;w))2 +
λ

2
||w||2

Ridge regression is used to regularize a model, making it simpler and allowing it to gen-
eralize better to new data. Indeed, the extra term penalizes overly large weights in w,
leading to smaller coefficients for a “flatter” polynomial:



Unlike LASSO, ridge regression has a closed form solution, which makes the solution
much more computationally efficient. While it does not shrink coefficients to zero, it has
other intuitive properties, such as connection to a Normal prior. The analytical solution
is:

wridge = (XTX+ λI)−1XTy

The above expression can be compared to the OLS solution. The only additional term is
λI, which looks like a “ridge” of λ values (hence the name ridge regression). This also
helps avoid problems with singular data.

Concept Question: Solve for the closed form solution to ridge regression.

Source: https://www.quora.com/Why-does-Lasso-regression-lead-to-sparse-solutions

The above diagram is a visual comparison between the LASSO and ridge regularizations
and may help you understand how they each behave when shrinking coefficients.

2.5 Exercise: Ridge Regression

Suppose we have some data matrix X ∈ Rn×m and targets y ∈ Rn. Suppose the data are
orthogonal*, i.e. satisfies X>X = I. Show that if ŵ is the solution to linear regression, and
ŵridge is the solution to ridge regression, then

ŵridge =
1

1 + λ
ŵ

This explicitly illustrates the phenomenon of weight shrinkage.

* Orthogonal data is a very special case in which the inner product between any two distinct features is
zero. Normally we expect features to be correlated. But it is used to gain this clean illustration of the effect

https://www.quora.com/Why-does-Lasso-regression-lead-to-sparse-solutions


Solution:

of ridge regression. Technically, we have X = [v1, . . . ,vm] where v1, . . . ,vm are n dimensional, orthogonal
column vectors.



2.6 Exercise: Lasso Regularization from Lagrange Multipliers

Show that minimization of the unregularized sum-of-squares error function given by

ED(w) =
1

2

N∑
n=1

(tn −wTφ(xn))
2,

subject to the constraint

M∑
j=1

|wj| ≤ η,

is equivalent to minimizing the regularized error function

1

2

N∑
n=1

(tn −wTφ(xn))
2 +

λ

2

M∑
j=1

|wj|

Solution:
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