
CS 181 Spring 2020 Section 10:
Markov Decision Processes and Reinforcement Learning

1 Markov Decision Processes

A Markov Decision Process (MDP) is a framework for modeling an agent’s
actions in the world. It consists of:

1. A set of states S

2. A set of actions A

3. A reward function r : S × A→ R

4. A transition model p(s′|s, a), ∀s, s′ ∈ S, a ∈ A.

A policy π is a mapping from states to actions, i.e. π : S → A.

1.1 Finite time horizon MDP

In the finite horizon setting, a policy may vary with the number of time periods
remaining. π(t) denotes the policy with t time steps to go. T is the decision
horizon. The value of a policy with t time steps to go is defined inductively to
be:

V π
(t)(s) =

{
r(s, π(1)(s)) if t = 1

r(s, π(t)(s)) +
∑

s′∈S p(s
′|s, π(t)(s))V π

(t−1)(s
′) o.w.

(1)

The process of computing these values inductively, working from the end of
the horizon to the present, is called value iteration. If we instead look forward
in time, we are computing the expected value of the policy

V π(s) = Es1,...,sT

[
T∑
t=1

r(st, π(T+1−t)(st))

]
(2)

by induction, where s1 := s. V π(s) is the MDP value function.
In an MDP, the general goal is to find an optimal policy by maximizing the

expected reward under the policy, i.e. maximizing the value function. This is
the planning problem.

1

1.2 Infinite Horizon MDP

Policy Evaluation We can also send T → ∞, i.e. have an infinite time
horizon. In that case, we need a discount factor 0 < γ < 1, and we want to
compute the value function

V π(s) = Es1,s2,...

[
∞∑
t=1

γt−1r(st, π(st))

]
(3)

where s1 := s, and the γ factor ensures convergence (assuming bounded re-
wards). In this setting, we only worry about stationary policies that don’t
vary with time. This is the policy evaluation problem; for any given policy π,
we can find V π(s) by solving the system of linear equations

V π(s) = r(s, π(s)) + γ
∑
s′∈S

p(s′|s, π(s))V π(s′) (4)

These capture consistency about the value function. To solve this system, we
can use Gaussian elimination, or simply iterate until convergence as in the
finite horizon case.

Given a policy π and θ (small positive number), we find V π iteratively as
follows:

• Initialize: V (s) = 0 for all states s.

• Repeat

– Update step:

V ′(s) = r(s, π(s)) + γ
∑
s′∈S

p(s′|s, π(s))V (s′), ∀s (5)

– ∆ = max(|V ′ − V |)
– V ← V ′

until ∆ < θ

Value Iteration Suppose we have an optimal policy π∗. This satisfies the
following set of equations known as the Bellman equations:

V ∗(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V ∗(s′)

]
(6)

where V ∗ , V π∗ . Assuming we know V ∗, we can read off the optimal policy
by setting

π∗(s) = arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V ∗(s′)

]
(7)

2

In order to find V ∗, we can use value iteration:

• Initialize: V (s) = 0 for all states s.

• Update step (Bellman operator):

V ′(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V (s′)

]
, ∀s (8)

• V ← V ′

where we iterate until convergence of V , which is guaranteed. With our con-
verged V , we can then find π∗ as in Equation 7.

Policy Iteration Another approach to planning is called policy iteration.
To do policy iteration, we evaluate a proposed policy π by finding V π as in
Equation 4. This is Evaluation step (E step). Then, we do a policy improve-
ment step (I step) by the equation

π′(s)← arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V π(s′)

]
, ∀s (9)

We repeat the E and I steps until the policy π converges (stops changing).
Note that policy iteration takes more computation per iteration, but tends

to converge faster in practice.

3

1.3 Exercise: Markov Decision Process

(Sutton & Barto 2012) Consider an MDP on the following grid:

A

B

At each square, we can go left, right, up, or down. Normally we get a reward
of 0 from moving, but if we attempt to move off the grid, we get a reward of
−1 and stay where we are. Also, if we move onto square A, we get a reward
of 10 and are teleported to square B.

Suppose our actions also fail with probability 0.5, i.e. with probability 0.5 we
stay on the current square. Also suppose our MDP is infinite horizon, and
take γ = 0.9 to be the discount factor.

1. Defining the MDP Identify the states S, actions A, rewards, and
transition probabilities p(s′|s, a) in this problem.

2. Policy Evaluation Suppose π is the policy where we always choose to
go right. Write the equations to find the values V π(s).

3. Value Iteration Write the second iteration of value iteration, i.e. start-
ing by initializing V (s) = maxa∈A r(s, a).

4. Policy Iteration Write the first iteration of policy iteration, starting
with V π(s) = 0 for all s. (We could also initialize a policy, and do the
Evaluation step to get started.)

4

2 Reinforcement Learning

In the general reinforcement learning setting, we don’t have access to the
transition distribution p(s′|s, a) or the reward function r(s, a) — information
about these only come to us through the outcome of the environment. This
problem is hard because some states can lead to high rewards, but we don’t
know which ones; even if we did, we don’t know how to get there!

To deal with this, in lecture, we discussed model-based and model-free re-
inforcement learning.

2.1 Model-based Learning

For model-based learning, we estimate the missing world models: r(s, a) and
p(s′|s, a), and then utilize planning (value or policy iteration) to develop a
policy π.

2.1.1 Concept Question

Can you think of a way to do this in practice? What are some downsides?

• In practice, one approach is to do a number of random walks. At each
state, we take a random action, and we track the awards we get and
the states we transition to. Using these, we can estimate the probability
distributions for the transitions and the average reward for each state-
action pair.

• The downside to this is that if there are many states and/or actions,
the transition model p(s′|s, a) becomes huge, and it may be hard to get
a good estimate of the true model. Also, the goal is not to learn the
transition model – it is to learn an optimal policy (so we may be doing
unnecessary work).

2.2 Model-Free Learning

In model-free learning, we are no longer interested in learning the transition
function and reward function. Instead, we are looking to directly infer the
optimal policy from samples of the world — that is, given that we are in state
s, we want to know the best action a = π∗(s) to take.

To do this, we use an alternate formulation of the Bellman equations, which
states that for an optimal policy π∗,

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a) max
a′∈A

[Q∗(s′, a′)], ∀s, a (10)

Then, once we have Q∗, we note that

π∗(s) = arg max
a

Q∗(s, a) (11)

5

The question then becomes how we can find the Q values that satisfy the
Bellman equations as written in Equation 10. To do this, we parameterize
Q(s, a; w) with parameters w, where ws,a = Q(s, a; w) is a table of estimated
Q values. We define a loss function which we want to minimize:

L(w) =
1

2
Es,a

(
Q(s, a; w)− [r(s, a) + γ

∑
s′

p(s′|s, a) max
a′

Q(s′, a′; w)]

)2

(12)

We can optimize this via stochastic gradient descent. In order to get sam-
ples to perform gradient descent on, the idea is to approximate the loss by
sampling s, a, giving a single gradient descent step

∂L
∂ws,a

= Q(s, a; w)− [r(s, a) + γ
∑
s′

p(s′|s, a) max
a′

Q(s′, a′; w)] (13)

If we can obtain a sample for the next state s′ and the reward r from the
environment, we can approximate this as

∂L
∂ws,a

≈ Q(s, a; w)− [r + γmax
a′

Q(s′, a′; w)] (14)

This is the term that we will use to update our estimates for Q:

ws,a ← ws,a − η
∂L
∂ws,a

(15)

where η > 0 is the learning rate.

2.3 Exploration vs. Exploitation

How do we actually obtain the above samples to approximate the loss? The
key issue here is exploration vs. exploitation.

In an exploitative approach, when we are in state s, we can simply take
action a = arg maxa∈AQ(s, a; w) based on our current estimate of the Q-
function.

In an explorative approach, we want to ensure that we have visited enough
squares and enough times to get good Q-function estimates; for example, we
might pick an action at random.

2.3.1 Concept Question

What would be a problem if our approach was only exploitative? In practice,
how might we balance exploitation vs exploration?

6

• If we focus on exploitation and do not explore enough, we might end
up with a bad estimate of the Q-function and never find the true best
action. We want to balance these two — exploitation lets us arrive
at the optimal policy faster, but exploration is necessary to properly
understand the state space.

• In practice, ε-greedy is a good policy for minimizing L. In the ε-greedy
method, we take arg maxa∈AQ(s, a; w) with probability 1 − ε, and pick
a ∈ A uniformly at random with probability ε (for some ε > 0).

2.4 On-Policy vs. Off-Policy

Suppose we now have a policy π that balances exploration and exploitation
(e.g. ε-greedy). To satisfy the Bellman equations for Q∗(s, a), the policy
would need to take the optimal actions in all future steps. Obviously, this
won’t always be true if we are exploring.

Therefore, there are multiple ways to write the gradient estimate ∂L/∂ws,a.
These are about how to learn, not about which explore/exploit policy to follow.
One approach is on-policy:

∂L
∂ws,a

≈ Q(s, a; w)− [r + γQ(s′, π(s′); w)] (16)

where r and s′ are given to us from the environment.
This is known as the SARSA update (State-Action-Reward-State-Action),

since we look ahead to get the action π(s′). Since we follow π in choosing this
action, this gradient method is on-policy. In practice this converges faster, but
we lose the guarantee of satisfying the Bellman equations (and thus may not
converge to the optimal policy).

Another approach is off-policy:

∂L
∂ws,a

≈ Q(s, a; w)− [r + γmax
a′∈A

Q(s′, a′; w)] (17)

This is know as the Q-learning update. This uses State-Action-Reward-State
from the environment. Since we take a max over actions a′ for the gradient
update, we are going ‘off-policy.’ This takes longer to converge, but our update
is consistent with the Bellman equations.

To summarize, no matter what our gradient estimate is, we make the
gradient update

ws,a ← ws,a − η
∂L
∂ws,a

(18)

For the case of Q-learning, this can be written as

ws,a ← ws,a − η
(
ws,a − [r + γmax

a′∈A
Q(s′, a′; w)]

)
(19)

= (1− η)ws,a + η[r + γmax
a′∈A

Q(s′, a′; w)] (20)

7

Essentially, we are interpolating the old value of ws,a with an estimate of the
future value.

Similarly, for SARSA, the update is

ws,a ← ws,a − η (ws,a − [r + γQ(s′, π(s′); w)]) (21)

= (1− η)ws,a + η[r + γQ(s′, π(s′); w)] (22)

2.5 Exercise: Q Learning

Consider the same MDP as in Exercise 1.3. However, suppose now we are
in the reinforcement learning setting, where we don’t know the transition
probabilities p(s′|s, a) or the reward function.

Suppose we start at the top left square and follow an ε-greedy policy. At the
beginning, suppose Q(s, a) = 0 for all s, a, except we know that we shouldn’t
go off the grid, so that the values of Q for the corresponding s, a pairs are −1.
Take learning rate η = 0.1.

1. For the first step, suppose our policy tells us to explore, and we end up
going right as our action (which succeeds). Write the Q-learning update.

2. Now write the SARSA update, assuming that our policy gives us a second
action telling us to explore and go down (which also succeeds).

8

