
CS 181 Spring 2020 Section 1 Notes:
Linear Regression, MLE

1 Least Squares (Linear) Regression

1.1 Takeaways

1.1.1 Linear Regression

The simplest model for regression involves a linear combination of the input variables:

h(x;w) = w1x1 + w2x2 + . . .+ wmxm =

m∑
j=1

wjxj = w>x (1)

where xj ∈ R for j ∈ {1, . . . ,m} are the features, w ∈ Rm is the weight parameter, with w1 ∈ R
being the bias parameter. (Recall the trick of letting x1 = 1 to merge bias.)

1.1.2 Least squares Loss Function

The least squares loss function assuming a basic linear model is given as follows:

L(w) =
1

2

n∑
i=1

(
yi −w>xi

)2
(2)

If we minimize the function with respect to the weights, we get the following solution:

w∗ = (X>X)−1X>y = argmin
w

L(w) (3)

where X ∈ Rn×m, so each row represents one data point and each column represents values of a
given feature across all the data points.

1.2 Concept Question

How does a model such as linear regression relate to a loss function like least squares?



1.3 Exercise: Practice Minimizing Least Squares

Let X ∈ Rn×m be our design matrix, y our vector of n target values, w our vector of m − 1
parameters, and w0 our bias parameter. As Bishop notes in (3.18), the least squares error function
of w and w0 can be written as follows

L(w, w0) =
1

2

n∑
i=1

yi − w0 −
m−1∑
j=1

wjXij

2

.

Find the value of w0 that minimizes L. Can you write it in both vector notation and summation
notation? Does the result make sense intuitively?



2 Maximum Likelihood Estimation

2.1 Takeaways

• Given a model and observed data, the maximum likelihood estimate (of the parameters) is
the estimate that maximizes the probability of seeing the observed data under the model.

• It is obtained by maximizing the likelihood function, which is the same as the joint pdf of
the data, but viewed as a function of the parameters rather than the data.

• Since log is monotone function, we will often maximize the log likelihood rather than the
likelihood as it is easier (turns products from independent data into sums) and results in the
same solution.

2.2 Exercise: MLE for Gaussian Data

We are given a data set (x1, . . . ,xn) where each observation is drawn independently from a mul-
tivariate Gaussian distribution:

N (x|µ,Σ) =
1

|(2π)Σ|1/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
(4)

where µ is a m-dimensional mean vector, Σ is a m by m covariance matrix, and |Σ| denotes the
determinant of Σ.

Find the maximum likelihood value of the mean, µMLE .



3 Linear Basis Function Regression

3.1 Takeaways

We allow h(x;w) to be a non-linear function of the input vector x, while remaining linear in
w ∈ Rd:

h(x;w) =
d∑

j=1

wjφj(x) = w>φ(x) (5)

where φ(x) : Rm → Rd denotes the jth term of φ(x). To merge bias, we define φ1(x) = 1.

3.2 Concept Questions

• What are some advantages and disadvantages to using linear basis function regression to
basic linear regression?

• How do we choose the bases?

3.3 Exercise: HW1 Q4


	Least Squares (Linear) Regression
	Takeaways
	Linear Regression
	Least squares Loss Function

	Concept Question
	Exercise: Practice Minimizing Least Squares

	Maximum Likelihood Estimation
	Takeaways
	Exercise: MLE for Gaussian Data

	Linear Basis Function Regression
	Takeaways
	Concept Questions
	Exercise: HW1 Q4


