CS 181 Spring 2020 Section 1 Notes: Linear Regression, MLE

1 Least Squares (Linear) Regression

1.1 Takeaways

1.1.1 Linear Regression

The simplest model for regression involves a linear combination of the input variables:

$$
\begin{equation*}
h(\mathbf{x} ; \mathbf{w})=w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{m} x_{m}=\sum_{j=1}^{m} w_{j} x_{j}=\mathbf{w}^{\top} \mathbf{x} \tag{1}
\end{equation*}
$$

where $x_{j} \in \mathbb{R}$ for $j \in\{1, \ldots, m\}$ are the features, $\mathbf{w} \in \mathbb{R}^{m}$ is the weight parameter, with $w_{1} \in \mathbb{R}$ being the bias parameter. (Recall the trick of letting $x_{1}=1$ to merge bias.)

1.1.2 Least squares Loss Function

The least squares loss function assuming a basic linear model is given as follows:

$$
\begin{equation*}
\mathcal{L}(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}\right)^{2} \tag{2}
\end{equation*}
$$

If we minimize the function with respect to the weights, we get the following solution:

$$
\begin{equation*}
\mathbf{w}^{*}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}=\underset{\mathbf{w}}{\arg \min } \mathcal{L}(\mathbf{w}) \tag{3}
\end{equation*}
$$

where $\mathbf{X} \in \mathbb{R}^{n \times m}$, so each row represents one data point and each column represents values of a given feature across all the data points.

1.2 Concept Question

How does a model such as linear regression relate to a loss function like least squares?

1.3 Exercise: Practice Minimizing Least Squares

Let $\mathbf{X} \in \mathbb{R}^{n \times m}$ be our design matrix, \mathbf{y} our vector of n target values, w our vector of $m-1$ parameters, and w_{0} our bias parameter. As Bishop notes in (3.18), the least squares error function of \mathbf{w} and w_{0} can be written as follows

$$
\mathcal{L}\left(\mathbf{w}, w_{0}\right)=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-w_{0}-\sum_{j=1}^{m-1} w_{j} X_{i j}\right)^{2} .
$$

Find the value of w_{0} that minimizes \mathcal{L}. Can you write it in both vector notation and summation notation? Does the result make sense intuitively?

2 Maximum Likelihood Estimation

2.1 Takeaways

- Given a model and observed data, the maximum likelihood estimate (of the parameters) is the estimate that maximizes the probability of seeing the observed data under the model.
- It is obtained by maximizing the likelihood function, which is the same as the joint pdf of the data, but viewed as a function of the parameters rather than the data.
- Since \log is monotone function, we will often maximize the log likelihood rather than the likelihood as it is easier (turns products from independent data into sums) and results in the same solution.

2.2 Exercise: MLE for Gaussian Data

We are given a data set $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right)$ where each observation is drawn independently from a multivariate Gaussian distribution:

$$
\begin{equation*}
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{|(2 \pi) \boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) \tag{4}
\end{equation*}
$$

where $\boldsymbol{\mu}$ is a m-dimensional mean vector, $\boldsymbol{\Sigma}$ is a m by m covariance matrix, and $|\boldsymbol{\Sigma}|$ denotes the determinant of $\boldsymbol{\Sigma}$.

Find the maximum likelihood value of the mean, $\boldsymbol{\mu}_{M L E}$.

3 Linear Basis Function Regression

3.1 Takeaways

We allow $h(\mathbf{x} ; \mathbf{w})$ to be a non-linear function of the input vector \mathbf{x}, while remaining linear in $\mathbf{w} \in \mathbb{R}^{d}$:

$$
\begin{equation*}
h(\mathbf{x} ; \mathbf{w})=\sum_{j=1}^{d} w_{j} \phi_{j}(\mathbf{x})=\mathbf{w}^{\top} \phi(\mathbf{x}) \tag{5}
\end{equation*}
$$

where $\phi(\mathrm{x}): \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ denotes the j th term of $\phi(\mathrm{x})$. To merge bias, we define $\phi_{1}(\mathrm{x})=1$.

3.2 Concept Questions

- What are some advantages and disadvantages to using linear basis function regression to basic linear regression?
- How do we choose the bases?

3.3 Exercise: HW1 Q4

