
CS 181 Spring 2020 Section 1 Notes:
Linear Regression, MLE

1 Least Squares (Linear) Regression

1.1 Takeaways

1.1.1 Linear Regression

The simplest model for regression involves a linear combination of the input variables:

h(x;w) = w1x1 + w2x2 + . . .+ wmxm =

m∑
j=1

wjxj = w>x (1)

where xj ∈ R for j ∈ {1, . . . ,m} are the features, w ∈ Rm is the weight parameter, with w1 ∈ R
being the bias parameter. (Recall the trick of letting x1 = 1 to merge bias.)

1.1.2 Least squares Loss Function

The least squares loss function assuming a basic linear model is given as follows:

L(w) =
1

2

n∑
i=1

(
yi −w>xi

)2
(2)

If we minimize the function with respect to the weights, we get the following solution:

w∗ = (X>X)−1X>y = argmin
w

L(w) (3)

where X ∈ Rn×m, so each row represents one data point and each column represents values of a
given feature across all the data points.

1.2 Concept Question

How does a model such as linear regression relate to a loss function like least squares?

• The model (of the data) and the loss functions are both important pieces to the ML pipeline,
but they are distinct. The model describes how you believe the data is related and/or gen-
erated. Very commonly, you will be optimizing over a family of models. The loss function
measures how well a specific model (i.e. with specific parameters) fits the data, and it is used
in the previously mentioned optimization.

• Least squares and linear regression are often used together, especially since there are theo-
retical justifications (i.e. MLE connection) to why least squares is a good loss function for
linear regression. However, you do not have to use them together. Another loss function
that could be used with linear regression is an absolute difference (L1) loss.



1.3 Exercise: Practice Minimizing Least Squares

Let X ∈ Rn×m be our design matrix, y our vector of n target values, w our vector of m − 1
parameters, and w0 our bias parameter. As Bishop notes in (3.18), the least squares error function
of w and w0 can be written as follows

L(w, w0) =
1

2

n∑
i=1

yi − w0 −
m−1∑
j=1

wjXij

2

.

Find the value of w0 that minimizes L. Can you write it in both vector notation and summation
notation? Does the result make sense intuitively?

Solution: We minimize by finding gradient w.r.t w0, setting to 0, and solving.

∂L

∂w0
= −

n∑
i=1

(yi − w0 −
m−1∑
j=1

wjXij) = 0

nw∗0 =
n∑

i=1

yi − m−1∑
j=1

wjXij


w∗0 =

1

n

( n∑
i=1

yi

)
−

n∑
i=1

m−1∑
j=1

wjXij


=

1

n

(
y>1−

n∑
i=1

w>xi

)

The result makes sense intuitively as it is the average deviation of the outputs from the predictions.



2 Maximum Likelihood Estimation

2.1 Takeaways

• Given a model and observed data, the maximum likelihood estimate (of the parameters) is
the estimate that maximizes the probability of seeing the observed data under the model.

• It is obtained by maximizing the likelihood function, which is the same as the joint pdf of
the data, but viewed as a function of the parameters rather than the data.

• Since log is monotone function, we will often maximize the log likelihood rather than the
likelihood as it is easier (turns products from independent data into sums) and results in the
same solution.

2.2 Exercise: MLE for Gaussian Data

We are given a data set (x1, . . . ,xn) where each observation is drawn independently from a mul-
tivariate Gaussian distribution:

N (x|µ,Σ) =
1

|(2π)Σ|1/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
(4)

where µ is a m-dimensional mean vector, Σ is a m by m covariance matrix, and |Σ| denotes the
determinant of Σ.

Find the maximum likelihood value of the mean, µMLE .

Solution: We find the MLE by maximizing the log likelihood:

l(µ,Σ;x) = log

(
n∏

i=1

N (xi|µ,Σ

)
=

n∑
i=1

log(N (xi|µ,Σ))

= −nm
2

log(2π)− n

2
log(|Σ|)− 1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ)

Taking the derivative (matrix cookbook is your friend) with respect to µ and setting it equal to 0,
we get

0 =
∂l

∂µ
=

n∑
i=1

Σ−1(xi − µ)

and solving gives us that

µMLE =
1

n

n∑
i=1

xi



3 Linear Basis Function Regression

3.1 Takeaways

We allow h(x;w) to be a non-linear function of the input vector x, while remaining linear in
w ∈ Rd:

h(x;w) =
d∑

j=1

wjφj(x) = w>φ(x) (5)

where φ(x) : Rm → Rd denotes the jth term of φ(x). To merge bias, we define φ1(x) = 1.

3.2 Concept Questions

• What are some advantages and disadvantages to using linear basis function regression to
basic linear regression?

• How do we choose the bases?

Basis functions allow us to capture nonlinear relations that may exist in the data, which linear
functions can not. There is, however, a greater risk of overfitting with the more flexible linear
basis function regression - more on this in the upcoming weeks in lecture.

We can choose the bases with expert domain knowledge, or they could even be learned them-
selves... (foreshadowing neural nets).

We don’t talk about feature engineering and incorporating expert domain knowledge too much in
this class; however, these are vital in real world situations for good performance. There will be at
least one pset question that will touch on this.

3.3 Exercise: HW1 Q4

If extra time, can have students work on this.
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