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1 Linear Algebra

1.1 Scalars and Vectors

A scalar is a single element of a field. For example, the real number s ∈ R is a scalar. We write scalars in
lowercase.

A vector of n dimensions is an ordered collection of n coordinates, where each coordinate is a scalar of the
underlying field. An n-dimensional vector v with real coordinates is an element of Rn. Equivalently, the
coordinates specify as single point in an n-dimensional space. By default, vectors will be columns and their
transposes will be rows. We write vectors in bold lowercase, and the vector itself as a column of scalars:

x =


x1
x2
...
xn


Vectors may be scaled. ax scales each element of x by scalar a. Vectors of the same dimension may be
added coordinate-wise. Vectors have both a direction and a magnitude. The magnitude, typically the L2
norm, of a vector can be computed as the square root of the sum of the squares of the coordinates:

||x||2 =

√√√√ n∑
i=1

x2i

Refer to other vector norms such as the L1, LP, and L∞ norms. Express the direction as a vector of
magnitude one. Use

1

||x||2
x

.
An important product between vectors of the same dimension is the inner product (also called dot product
or scalar product). For two vectors u and v, this is equal to

∑n
i=1 uivi = ||u||2||v||2 cosα where α is the angle

between u and v. Note that a vector u dotted with itself equals the square of its L2 norm: 〈u,u〉 = ||u||22.
The outer product between two vectors is the matrix W whose entries are wij = uivj .

1.2 Linear Independence

A set of non-zero vectors {v1, ...,vn} is linearly independent if the equation c1v1 + c2v2+, ...,+cnvn = 0
for scalars c1, ..., cn can only be satisfied by setting c1, ..., cn all to 0.

1.3 Spaces and Subspaces

A vector space V is a collection of vectors that follow several axioms regarding the properties of scaling
and addition described above, and most importantly:

• closure under scaling: ∀v ∈ V and scalars a, av ∈ V

• closure under addition: ∀u,v ∈ V, (u + v) ∈ V
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The set of vectors {v1, ...,vn} form an orthonormal basis for V if they are all unit vectors (normal) and if
〈vi,vj〉 = 0,∀i 6= j (orthogonal) where 〈, 〉 is the inner product. Let S be a vector space. If all of these hold:

• S ⊆ V

• closure under scaling: ∀u ∈ S and scalars a, au ∈ S

• closure under addition: ∀u,v ∈ S, (u + v) ∈ S

then S is a subspace of V

1.4 Scalar, Vector, and Subspace Projection

For vectors u,v ∈ V and v 6= 0, the scalar projection a of u onto v is computed as:

a =
〈u,v〉
||v||

Using this, the vector projection p of u onto v can be computed as:

a
( 1

||v||
v
)

=
〈u,v〉
〈v,v〉

v

This has the properties that 〈u− p,p〉 = 0 and u = p if and only if u is a scaled multiple of v.
Finally (this is important for ML), it is possible to project a vector u in a vector space V onto a subspace
S of V. If the set of vectors {s1, ..., sm} form an orthonormal basis for S, then the subspace projection p
of u onto S can be expressed as the sum of the projections of u onto each element of the basis of S:

p =

m∑
i=1

〈u, si〉
〈si, si〉

si

This has the properties that the vector u − p is orthogonal to all vectors in S, that u = p if and only if
u ∈ S, and that p is the closest vector in S to u. ||u−v|| > ||u−p||,∀v 6= p,v ∈ S. A couple of connections:
reconstruction loss of dimensionality reduction and projection as conditional probability.

1.5 Matrices

A matrix is a rectangular array of scalars. Primarily, an n × m matrix A is used to describe a linear
transformation from m to n dimensions, where the matrix is an operator. If the underlying field is
R, then A ∈ Rn×m. Aij is the scalar found at the ith row and jth column. We write matrices in bold
uppercase. A typical linear transformation looks like y = Ax where x ∈ Rm,y ∈ Rn,A ∈ Rn×m. What’s
linear? The property that A(λ1u + λ2v) = λ1Au + λ2Av for scalars λ1 and λ2. These notes do not go into
the generalizations of many matrix properties from R to C (e.g. transpose to conjugate transpose, symmetric
to Hermitian).

1.6 Matrix Properties

• A> is the transpose of A and has A>ji = Aij .

• A is symmetric if Aij = Aji. That is, A = A>. Only square matrices can be symmetric.

• A is said to be orthogonal if its rows and its columns are orthogonal unit vectors. Consequence:
A>A = AA> = I where I is the identity matrix (ones on the main diagonal and zeros elsewhere).
Orthogonal matrix A has A> = A−1.
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• Diagonal matrices have non-zero values on the main diagonal and zeros elsewhere. Diagonal matri-
ces are easy to take powers of. Under certain conditions a matrix may be diagonalized, see eigen-
decomposition and SVD below.

• A matrix is upper-triangular if the only non-zero values are on the diagonal or above (top right
of matrix). A matrix is lower-triangular if the only non-zero values are on the diagonal or below
(bottom right of matrix).

1.7 Matrix Multiplication Properties

AB is a valid matrix product if A is p × q and B is q × r (left matrix has same number of columns
as right matrix has rows). There are many others important matrix products, such as the element-wise
Hadamard product A�B between matrices of the same shape. The standard matrix product corresponds
to the composition of operators.

• Generally not commutative: AB 6= BA

• Left/Right Distributive over addition: A(B + C) = AB + AC. (A + B)C = AC + BC.

• For some scalar λ: λ(AB) = (λA)B and (AB)λ = A(Bλ), and all four are equal if λ is real or complex.

• transpose of product: (AB)> = B>A>

1.8 Rank, Determinant, Inverse

The rank of a matrix A is the dimension of the vector space spanned by its column vectors. A matrix is
full rank if all its column vectors are linearly independent. The same holds for row vectors. If A is n ×m,
then rank(A) ≤ min(n,m).

The determinant of a square matrix is a scalar quantity with various uses. Its computation differs for
square matrices of different sizes. The existence of a matrix inverse depends on a non-zero determinant.
det(A) is also the product of the eigenvalues of A. You may see the determinant denoted with single bars,
e.g. |X|. However, the authors prefer det(X). Do not confuse |X| with double bars ||X||, which typically
denote a norm.

The inverse A−1 of matrix operator A “undoes” A much like multiplying by 1
x undoes multiplying by x.

A−1 only exists if det(A) 6= 0. In general, matrix inversion is a complicated operation, but special cases
that are easy to work with come up in the machine learning literature. Often analytical solutions to systems
depend on the existence of the inverse of a matrix. AA−1 = A−1A = I.

The Moore-Penrose pseudoinverse A+ of A is a generalization of the inverse to non-square matrices,
where AA+A = A. AA+ may not be the general identity matrix but maps all column vectors of A to
themselves.

1.9 Eigen-Everything

Each linear operator (matrix) has some set of vectors in its domain that are simply mapped to a scaled
version of the vector in the codomain. The operator preserves the direction of these vectors: Ax = λx for
some scalar value λ. In this case, λ is an eigenvalue of A and x is a corresponding eigenvector. These
can be seen as the invariant directions of the operator.

The eigenvectors of the empirical covariance matrix of some data correspond to the directions of variance
in the data. The eigenvectors with the largest associated eigenvalues correspond to the directions of highest
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variance in the data (by construction). These directions may be linear combinations of the original coordi-
nates (features) of the data. See Principal Component Analysis (PCA) and dimensionality reduction.

Eigen-decomposition: Let A be an n×n full-rank matrix with n linearly independent eigenvectors {qi}ni=1.
A can be factored into A = QΛQ−1 where Q is n×n and has qi for its ith column. Λ is a diagonal matrix
whose elements are the corresponding eigenvalues: Λii = λi. If a matrix A can be eigen-decomposed and
none of its eigenvalues are 0, then A is nonsingular and its inverse is given by A−1 = QΛ−1Q−1 with
Λ−1ii = 1

λi
.

Singular Value Decomposition is a useful generalization of eigen-decomposition to rectangular matrices.
Let A be an m× n matrix. Then A can be factored into UΣV> = UΣV−1 where

• U is m×m and orthogonal. The columns of U are the left-singular vectors of A.

• Σ is an m× n diagonal matrix with non-negative real entries. The diagonal values σi of Σ are known
as the singular values of A. These are also the square roots of the eigenvalues of A>A.

• V is an n× n orthogonal matrix. The columns of V are the right-singular vectors of A.

1.10 Positive Definiteness

The symmetric matrix A ∈ Rn×n is said to be positive definite if it satisfies the property

x>Ax > 0

and positive semi-definite if it satisfies

x>Ax ≥ 0

for every non-zero vector x ∈ Rn. Positive definite matrices have all eigenvalues > 0 and positive semi-definite
matrices have all eigenvalues ≥ 0.

2 Calculus

2.1 Differentiation

You should be familiar with single-variable differentiation, including properties like:

Chain rule:
d

dx
f(g(x)) = f ′(g(x))g′(x)

Product rule:
d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x)

Linearity:
d

dx
(af(x) + bg(x)) = af ′(x) + bg′(x)

for scalars a and b. In multivariable calculus, a function may have some number of inputs (say n) and some
number of outputs (say m). In general, there is a partial derivative for every input-output pair. This is
called the Jacobian. The jth column is made up of the partial derivatives of fj (the jth output value of f)
with respect to all input elements, rows i = 1 to n.

df(x)

dx
=


∂f1(x)
∂x1

· · · ∂fm(x)
∂x1

...
. . .

...
∂f1(x)
∂xn

· · · ∂fm(x)
∂xn
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If f is scalar-valued, its derivative is a column vector we call the gradient vector (like a single column of
the Jacobian):

df(x)

dx
=


∂f(x)
∂x1
∂f(x)
∂x2

...
∂f(x)
∂xn


The gradient vector points in the direction of steepest ascent in f(x) (actually, see diff. geo. for cases when
this is not true). This is useful for optimization.

The Hessian matrix is like the Jacobian but with second-order derivatives. There are many interesting
optimization topics related to the Hessian.

A few important derivatives:

∂x>a

∂x
=
∂a>x

∂x
= a

∂a>Xb

∂X
= ab>

∂(x−As)TW(x−As)

∂s
= −2ATW(x−As)

∂a>X>b

∂X
= ba>

∂a>Xa

∂X
=
∂a>X>a

∂X
= aa>

∂X

∂Xij
= Jij ***

*** J is NOT the Jacobian, but rather, a matrix with all zeros except for a 1 in the i, j entry.

Have you ever wondered how to differentiate the norm of a matrix? The eigenvalues? For more, see the
Matrix Cookbook by Petersen and Pedersen (linked on course website).

2.2 Optimization

Local Extrema: Recall that the local extrema of a single-variable function can be found by setting its

derivative to 0. The same is true here, using the condition df(x)
dx = 0. However, this equation is often

intractable. We can search for local minima numerically using gradient-based methods.

Gradient Descent (we will learn this in class): We start with an initial guess at at a useful value for a
parameter w: w0. Then at each step i we update our guess by going in the direction of greatest descent of
a loss function (opposite the direction of the gradient vector):

wi+1 = wi − η
df(w)

dw

where η is a learning rate. We stop when the value of the gradient is close to 0.
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3 Probability Theory

3.1 Random Variables

A random variable can either be discrete or continuous. A discrete random variable X takes one of m
values from sample space X , each with a corresponding probability p(x) for x ∈ X . p(x) is the probability
mass function of X and can also be written as pX(x). We say that x ∼ X (x is sampled from X) when
the value of x is picked in accordance with the distribution of X.

A continuous random variable can take on a continuous range of values. We use p(x) or pX(x) for the
probability density function of a continuous random variable. It’s important to note that the probability
of any one exact value is zero. It’s important to think of the function as assigning densities that behave like
relative probabilities rather than absolute masses. Among other things, p(x) can be greater than 1.

3.2 Expectation

The expected value (or expectation, mean) of a random variable can be thought of as the “weighted
average” of the possible outcomes of the random variable. For discrete variables:

Ex∼p(x)[X] =
∑
x∈X

x · p(x) E[f(X)] =
∑
x∈X

f(x)p(x)

For continuous variables:

E[X] =

∫
X
x · p(x)dx E[f(X)] =

∫
X
f(x)p(x)dx

The most important property of expected values is the linearity of expectation. For any two random
variables X and Y (regardless of independence)

• E[aX + bY + c] = aE[X] + bE[Y ] + c

• E[XY ] = E[X]E[Y ] under independence

3.3 Variance

The variance of a random variable is its expected squared deviation from its mean

var(X) = E[(X − E[X])2]

= E[X2]− (E[X])2

Variance is a measure of the spread of a random variable. High variance variables are more spread out.
Consider two normal distributions, one tall and skinny, and the other shorter and wider.

var(aX + b) = a2var(X)

3.4 Joint Probability

The joint probability of X = x and Y = y is written as p(x, y) or pXY (x, y). For independent random
variables X and Y we have p(x, y) = p(x)p(y). However, in the more general case we must condition:
p(x, y) = p(x)p(y|x) = p(y)p(x|y) (see next section). When you have a joint PMF or PDF of two or more
random variables, its a common situation to want the marginal distribution of a single variable. For a
pair of random variables X and Y , use the sum rule:
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Discrete: p(x) =
∑
y∈Y

p(x, y)

Continuous: p(x) =

∫
y∈Y

p(x, y)

3.5 Conditional Probability

Receiving information about the value of a random variable Y can change the distribution of another variable
X. We write the new conditional random variable as X|Y , and the new conditional distribution as p(x|y).
Manipulating the definition for the joint probability of random variables that may be dependent, we get:

p(x|y) =
p(x, y)

p(y)

As mentioned above, when dealing with the joint probability of several dependent variables, factor into
chains of conditional probabilities with the product rule:

p(x, y, z) = p(x)p(y|x)p(z|x, y)

= p(y)p(x|y)p(z|x, y)

= p(z)p(x|z)p(y|x, z)
= etc...

See http://colah.github.io/posts/2015-09-Visual-Information/ for some interesting visualizations
of conditional probability and information theory.

3.6 Bayes’ Theorem

This is a central theorem that we will use repeatedly in this course, and is an extension of the product rule.

p(x|y) =
p(y|x)p(x)

p(y)

Since we are conditioning on y, y is held constant, and that means p(y) is just a normalization constant. As
a result, we often write the above property as

p(x|y) ∝ p(y|x)p(x)

3.7 Covariance

The covariance between two jointly distributed random variables X and Y with finite variances is defined
as the expected product of their deviations from their individual expected values. Intuitively, this asks: are
X and Y likely to tend above E[X] and E[Y ] jointly (high covariance)? Or does X tend below E[X] while
Y tends above E[Y ] and vise versa (low covariance)?

cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]
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When considering data in n dimensions, compute the n× n covariance matrix (often denoted Σ), where
Σij = cov(Xi, Xj) is the empirical covariance between the ith and jth features.

Properties of covariance: (supposing X,Y, Z have mean 0 and finite variances)

• Symmetric: cov(X,Y ) = cov(Y,X)

• Positive Semi-definite: cov(X,X) ≥ 0

• cov(X,X) = 0 implies X always takes the same value, its mean

• Bilinear: cov(aX + bY, Z) = acov(X,Z) + bcov(Y,Z)

• Triangle Inequality: |cov(X,Y )| ≤
√

var(X)var(Y )

3.8 Conditional Expectation and Conditional Variance

It is common to determine the expectation and variance of a variable. If X and Y are random variables,
then E[X|Y ] is a random variable too, because it can take on several values depending on Y . E[X|Y = y]
is the expected (or average) value of the random variable X given a particular observed value of Y . This is
called the conditional expectation of X given Y = y.

Similarly, we can define conditional variance as

var(X|Y ) = E[(X − E[X|Y ])2|Y ] = E[X2|Y ]− E[X|Y ]2

Adam’s law (law of iterated expectations) gives

E[X] = E[E[X|Y ]]

Eve’s Law (or law of total variance) is the analogous case for variance

var[X] = E[var[X|Y ]] + var[E[X|Y ]]

3.9 Gaussians

3.9.1 Univariate PDF

N (x;µ, σ2) =
1√
2πσ

exp

(
− 1

2σ2
(x− µ)2

)
• If X,Y are independent normals then X + Y ∼ N (µX + µY , σ

2
X + σ2

Y )

• aX + b ∼ N (aµ+ b, a2σ2)

• Any PDF proportional to exp(ax2 + bx+ c) must be a Gaussian PDF.

3.9.2 Multivariate PDF

Given dimension m, mean vector µ ∈ Rm, and covariance matrix Σ ∈ Rm×m,

N (x;µ,Σ) =
1

det(2πΣ)1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
Note: there are many ways to write the MVN PDF. You may notice the absence of m in the coefficient.
This works because the 2π distributes nicely over Σ in the determinant.
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