(CS181 Section #0 Note, Condensed
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1 Linear Algebra

1.1 Scalars and Vectors

Scalar: A scalar is a single element of a field, e.g. 5.

Vector: A vector is an ordered collection of n coordinates, where each coordinate is a scalar of the
underlying field.
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Norms: The formula for the Ln norm is given by:
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Inner Product: Also called the dot product or scalar product, this is equal to:
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where « is the angle between u and v. Note that: (u,u) = ||u]|3, since a = 0.

1.2 Linear Independence
A set of non-zero vectors {vy,...,v,} is linearly independent if the equation ¢;vy + cava+, ..., +¢cpv,, =0
for scalars cy, ..., ¢, can only be satisfied by setting ¢, ..., ¢, all to 0.
1.3 Spaces and Subspaces
Vector space: A vector space V is a collection of vectors that satisfy the following properties:
e Closure under scaling: Vv € V and scalars a, av € V
e Closure under addition: Vu,v € V,(u+v) € V

Orthonormal basis: The set of vectors {vy,...,v,} form an orthonormal basis for V if they are all unit
vectors ("normal”) and if (v;,v;) = 0,Vi # j ("orthogonal”) where (,) is the inner product.



1.4 Scalar, Vector, and Subspace Projection

For vectors u,v € V and v # 0, the scalar projection a of u onto v is computed as:
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The subspace projection p of u onto S can be expressed as the sum of the projections of u onto each
element of the basis of S:
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1.5 Matrices

A matrix is a rectangular array of scalars. We write matrices in bold uppercase.

If we have A € R™ ™ then the matrix A is an n X m matrix that represents a linear transformation
from m to n dimensions, where A is an operator. A;; is the scalar found at the it" row and j** column.
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A typical linear transformation looks like the following, where x € R™,y € R" A € R"*"™:

y = Ax

1.6 Matrix Properties
e AT is the transpose of A and has A;'; = Ayj.
e A is symmetric if A;; = Aj;. That is, A = AT. Only square matrices can be symmetric.

e A is orthogonal if its rows and columns are orthogonal unit vectors. Consequence: ATA = AAT =1
where I is the identity matrix (ones on the main diagonal and zeros elsewhere). Orthogonal matrix
Ahas AT = A1

e Diagonal matrices have non-zero values on the main diagonal and zeros elsewhere.

Upper-triangular matrices only have non-zero values on the diagonal or above (top right of matrix).

Lower-triangular matrices only have non-zero values on the diagonal or below (bottom right of
matrix).



1.7 Matrix Multiplication

AB is a valid matrix product if A is p x ¢ and B is ¢ x r (left matrix has same number of columns as
right matrix has rows).

Properties of matrix multiplication:
e AB # BA (usually)
e AB+C)=AB+ACand (A+B)C=AC+BC.
e \(AB) = (MA)B and (AB)X = A(B)\), for some scalar \.
e (AB)T=BTAT

1.8 Rank, Determinant, Inverse

Rank: The rank of a matrix is the dimension of the vector space spanned by its column vectors. A matrix
is full rank if all its column vectors are linearly independent.

Determinant: The determinant of a square matrix is a scalar quantity. det(A) is equal to the product
of the eigenvalues of A. Note: You may also see the determinant denoted with single bars, e.g. |X].

Inverse: The inverse A~! “undoes” A much like multiplying by % undoes multiplying by x. A~! only
exists if det(A) # 0. It is a given that AA~ = A~1A =1

Moore-Penrose Pseudoinverse: The Moore-Penrose pseudoinverse AT of A is a generalization of
the inverse to non-square matrices, where AATA = A. However, AAT may not be the general identity
matrix but maps all column vectors of A to themselves.

1.9 Eigen-Everything

FEigenvalues: If Ax = Ax for some scalar A, then A is an eigenvalue of A and x is an eigenvector.

Eigen-decomposition: Let A be an nxn full-rank matrix with n linearly independent eigenvectors {q; }7 ;.
A can be factored into A = QAQ ™! where Q is n x n and has q; for its i column. A is a diagonal matrix

whose elements are the corresponding eigenvalues: A;; = ;. If a A can be eigen-decomposed and none of

its eigenvalues are 0, then A is nonsingular and its inverse is given by A=* = QA~!Q~! with A;;' = L.

Singular Value Decomposition: Generalizes eigen-decomposition to rectangular matrices. Let A be an
m x n matrix. Then A can be factored into ULV T = USV~! where

e U is m x m and orthogonal. The columns of U are the left-singular vectors of A.

e 3 is an m X n diagonal matrix with non-negative real entries. The diagonal values o; of 3 are known
as the singular values of A. These are also the square roots of the eigenvalues of AT A.

e V is an n x n orthogonal matrix. The columns of V are the right-singular vectors of A.

1.10 Positive Definiteness

Positive definite: Symmetric matrix A € R"*" is positive definite if, for all non-zero vector x € R™:

x Ax >0



Positive semi-definite: Symmetric matrix A € R™*" is positive semi-definite if, for all non-zero vector
x € R™:

x Ax >0

Positive definite means all eigenvalues > 0, while positive semi-definite means all eigenvalues > 0.

2 Calculus

2.1 Differentiation

Chain rule: %f(g(x)) = f(g(z))g (z)
Product rule: %f(m)g(x) = f(x)g(z) + f(2)g ()

Linearity: %(af(x) +bg(x)) = af'(x) + bg'(z)
for scalars a and b.

The Jacobian is a matrix where the j** column is made up of the partial derivatives of f; (the Gt output

value of f) with respect to all input elements, rows ¢ = 1 to n.
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If f is scalar-valued, its derivative is a column vector we call the gradient vector:
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The gradient vector points in the direction of steepest ascent in f(x), which is useful for optimization.

A few important derivatives:
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*** J is NOT the Jacobian, but rather, a matrix with all zeros except for a 1 in the ¢, j entry.

For more matrix derivatives, see the Matrix Cookbook linked on the course website.

2.2 Optimization

Local Extrema: The local extrema of a single-variable function can be found by solving dfi(;‘) = 0. However,

this equation is often intractable. We can search for local minima numerically using gradient-based methods.

Gradient Descent: Start with an initial guess wq for the value of parameter w. At each step i, update
our guess for w by going in the direction of greatest descent of a loss function (opposite the gradient vector):

df (w)
1 dw

where 7 is a learning rate. We stop when the value of the gradient is close to 0.

Wit1 = W

3 Probability Theory

3.1 Random Variables

Discrete: Takes a value from a sample space X’ of discrete values. p(x) is the probability mass function
of X and can also be written as px(z). We say that x ~ X (z is sampled from X) when the value of x is
picked in accordance with the distribution of X.

Continuous: Can take on a continuous range of values. p(z) or px (x) represents the probability density
function of a continuous random variable. The probability of any one exact value is zero.
3.2 Expectation

The expected value (or expectation or mean) of a random variable can be thought of as the “weighted
average” of the possible outcomes of the random variable. For discrete variables:

Epp(@)[X] = Yz pla) E[f(X)] = ) f(z)p(x)
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For continuous variables:
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Properties of expectation:

o ElaX +bY + ¢ =aE[X] +bE[Y] + ¢
e E[XY] =E[X]E[Y] if X and Y are independent

3.3 Variance

Variance is a measure of the spread of a random variable.
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Properties of variance:
var(aX +b) = a*var(X)
3.4 Joint Probability
The joint probability of X = 2 and Y = y is written as p(z,y) or pxy(z,y).
If X and Y are independent, then: p(z,y) = p(x)p(y).
It will always be true that: p(x,y) = p(z)p(y|z) = p(y)p(z|y)
Convert a joint probability p(z, y) to the marginal distribution of a single variable, e.g. p(z), by summing:
Discrete: p(x Zp z,y) Continuous: p(z) = / p(z,y)
yey yey

3.5 Conditional Probability

X|Y represents the random variable X conditioned on the random variable Y.

p(z,y)
p(y)

plzly) =
We can factor a joint probability into chains of conditional probabilities with the product rule:

p(z,y,2) p(w)p(ylw) ( Iaj Y)

3.6 Bayes’ Theorem

p(y|x)p(x)
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Since we are conditioning on ¥, that means y is constant and can be replaced with a normalizing constant:
p(zly) o< p(ylz)p(x)

3.7 Covariance
cov(X,Y) =E[(X —E[X])(Y —E[Y])]
Properties of covariance: (supposing X,Y, Z have mean 0 and finite variances)
e Symmetric: cov(X,Y) = cov(Y, X)
e Positive Semi-definite: cov(X,X) >0
e Bilinear: cov(aX + bY, Z) = acov(X, Z) + beov(Y, Z)

The n x n covariance matrix (often denoted X), where X;; = cov(X;, X;) is the empirical covariance
between the " and j* features.



3.8 Conditional Expectation and Conditional Variance

The conditional expectation of X given Y =y is: E[X|Y].
Similarly, conditional variance is: var(X|Y) = E[(X — E[X|Y])?|Y] = E[X?|Y] — E[X|Y]?
Properties:

e E[X] =E[E[X]|Y]]

o var[X] = E[var[X|Y]] + var[E[X Y]]

3.9 Gaussians

3.9.1 Univariate PDF

1 1
N(z;p,02%) = —— ex (z 2)
(@3 1, 07) oy P 5,2 (= 1)
e If X,Y are independent normals then X +Y ~ N (ux + py, 0% + 02)
e aX +b~ N(au+b,a%0?)

e Any PDF proportional to exp(az? + bz + ¢) must be a Gaussian PDF.

3.9.2 Multivariate PDF

Given dimension m, mean vector u € R™, and covariance matrix X € R™*™

1

N(x;p,2) = det(2nz)1/2 exp (—;(X —p)'E T (x - M))



