CS181 Section \#0 Note, Condensed

1 Linear Algebra

1.1 Scalars and Vectors

Scalar: A scalar is a single element of a field, e.g. 5.
Vector: A vector is an ordered collection of n coordinates, where each coordinate is a scalar of the underlying field.

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Norms: The formula for the $\mathbf{L} \boldsymbol{n}$ norm is given by:

$$
\|\mathbf{x}\|_{n}=\sqrt{\sum_{i=1}^{n} x_{i}^{n}}
$$

Inner Product: Also called the dot product or scalar product, this is equal to:

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\sum_{i=1}^{n} u_{i} v_{i}=\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2} \cos \alpha
$$

where α is the angle between \mathbf{u} and \mathbf{v}. Note that: $\langle\mathbf{u}, \mathbf{u}\rangle=\|\mathbf{u}\|_{2}^{2}$, since $\alpha=0$.

1.2 Linear Independence

A set of non-zero vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is linearly independent if the equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+, \ldots,+c_{n} \mathbf{v}_{n}=\mathbf{0}$ for scalars c_{1}, \ldots, c_{n} can only be satisfied by setting c_{1}, \ldots, c_{n} all to 0 .

1.3 Spaces and Subspaces

Vector space: A vector space \mathcal{V} is a collection of vectors that satisfy the following properties:

- Closure under scaling: $\forall \mathbf{v} \in \mathcal{V}$ and scalars $a, a \mathbf{v} \in \mathcal{V}$
- Closure under addition: $\forall \mathbf{u}, \mathbf{v} \in \mathcal{V},(\mathbf{u}+\mathbf{v}) \in \mathcal{V}$

Orthonormal basis: The set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ form an orthonormal basis for \mathcal{V} if they are all unit vectors ("normal") and if $\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=0, \forall i \neq j$ ("orthogonal") where \langle,$\rangle is the inner product.$

1.4 Scalar, Vector, and Subspace Projection

For vectors $\mathbf{u}, \mathbf{v} \in \mathcal{V}$ and $\mathbf{v} \neq \mathbf{0}$, the scalar projection a of \mathbf{u} onto \mathbf{v} is computed as:

$$
a=\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\|\mathbf{v}\|}
$$

Using this, the vector projection \mathbf{p} of \mathbf{u} onto \mathbf{v} can be computed as:

$$
a\left(\frac{1}{\|\mathbf{v}\|} \mathbf{v}\right)=\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v}
$$

The subspace projection \mathbf{p} of \mathbf{u} onto \mathcal{S} can be expressed as the sum of the projections of \mathbf{u} onto each element of the basis of \mathcal{S} :

$$
\mathbf{p}=\sum_{i=1}^{m} \frac{\left\langle\mathbf{u}, \mathbf{s}_{i}\right\rangle}{\left\langle\mathbf{s}_{i}, \mathbf{s}_{i}\right\rangle} \mathbf{s}_{i}
$$

1.5 Matrices

A matrix is a rectangular array of scalars. We write matrices in bold uppercase.
If we have $\mathbf{A} \in \mathbb{R}^{n \times m}$, then the matrix \mathbf{A} is an $n \times m$ matrix that represents a linear transformation from m to n dimensions, where \mathbf{A} is an operator. $A_{i j}$ is the scalar found at the $i^{t h}$ row and $j^{t h}$ column.

$$
\mathbf{A}=\left[\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 m} \\
\vdots & \ddots & & \vdots \\
A_{n 1} & A_{n 2} & \ldots & A_{n m}
\end{array}\right]
$$

A typical linear transformation looks like the following, where $\mathbf{x} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{n \times m}$:

$$
\mathbf{y}=\mathbf{A} \mathbf{x}
$$

1.6 Matrix Properties

- \mathbf{A}^{\top} is the transpose of \mathbf{A} and has $A_{j i}^{\top}=A_{i j}$.
- A is symmetric if $A_{i j}=A_{j i}$. That is, $\mathbf{A}=\mathbf{A}^{\top}$. Only square matrices can be symmetric.
- \mathbf{A} is orthogonal if its rows and columns are orthogonal unit vectors. Consequence: $\mathbf{A}^{\top} \mathbf{A}=\mathbf{A}^{\top}=\mathbf{I}$ where \mathbf{I} is the identity matrix (ones on the main diagonal and zeros elsewhere). Orthogonal matrix \mathbf{A} has $\mathbf{A}^{\top}=\mathbf{A}^{-1}$.
- Diagonal matrices have non-zero values on the main diagonal and zeros elsewhere.
- Upper-triangular matrices only have non-zero values on the diagonal or above (top right of matrix).
- Lower-triangular matrices only have non-zero values on the diagonal or below (bottom right of matrix).

1.7 Matrix Multiplication

$\mathbf{A B}$ is a valid matrix product if \mathbf{A} is $p \times q$ and \mathbf{B} is $q \times r$ (left matrix has same number of columns as right matrix has rows).

Properties of matrix multiplication:

- $\mathbf{A B} \neq \mathbf{B A}$ (usually)
- $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$ and $(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}$.
- $\lambda(\mathbf{A B})=(\lambda \mathbf{A}) \mathbf{B}$ and $(\mathbf{A B}) \lambda=\mathbf{A}(\mathbf{B} \lambda)$, for some scalar λ.
- $(\mathbf{A B})^{\top}=\mathbf{B}^{\top} \mathbf{A}^{\top}$

1.8 Rank, Determinant, Inverse

Rank: The rank of a matrix is the dimension of the vector space spanned by its column vectors. A matrix is full rank if all its column vectors are linearly independent.

Determinant: The determinant of a square matrix is a scalar quantity. $\operatorname{det}(\mathbf{A})$ is equal to the product of the eigenvalues of \mathbf{A}. Note: You may also see the determinant denoted with single bars, e.g. $|\mathbf{X}|$.

Inverse: The inverse \mathbf{A}^{-1} "undoes" \mathbf{A} much like multiplying by $\frac{1}{x}$ undoes multiplying by $x . \mathbf{A}^{-1}$ only exists if $\operatorname{det}(\mathbf{A}) \neq 0$. It is a given that $\mathbf{A} \mathbf{A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$.

Moore-Penrose Pseudoinverse: The Moore-Penrose pseudoinverse \mathbf{A}^{+}of \mathbf{A} is a generalization of the inverse to non-square matrices, where $\mathbf{A} \mathbf{A}^{+} \mathbf{A}=\mathbf{A}$. However, $\mathbf{A} \mathbf{A}^{+}$may not be the general identity matrix but maps all column vectors of \mathbf{A} to themselves.

1.9 Eigen-Everything

Eigenvalues: If $\mathbf{A x}=\lambda \mathbf{x}$ for some scalar λ, then λ is an eigenvalue of \mathbf{A} and \mathbf{x} is an eigenvector.
Eigen-decomposition: Let \mathbf{A} be an $n \times n$ full-rank matrix with n linearly independent eigenvectors $\left\{\mathbf{q}_{i}\right\}_{i=1}^{n}$. \mathbf{A} can be factored into $\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{-1}$ where \mathbf{Q} is $n \times n$ and has \mathbf{q}_{i} for its $i^{t h}$ column. $\boldsymbol{\Lambda}$ is a diagonal matrix whose elements are the corresponding eigenvalues: $\Lambda_{i i}=\lambda_{i}$. If a \mathbf{A} can be eigen-decomposed and none of its eigenvalues are 0 , then \mathbf{A} is nonsingular and its inverse is given by $\mathbf{A}^{-1}=\mathbf{Q} \boldsymbol{\Lambda}^{-1} \mathbf{Q}^{-1}$ with $\boldsymbol{\Lambda}_{i i}^{-1}=\frac{1}{\lambda_{i}}$.

Singular Value Decomposition: Generalizes eigen-decomposition to rectangular matrices. Let A be an $m \times n$ matrix. Then \mathbf{A} can be factored into $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{-1}$ where

- \mathbf{U} is $m \times m$ and orthogonal. The columns of \mathbf{U} are the left-singular vectors of \mathbf{A}.
- $\boldsymbol{\Sigma}$ is an $m \times n$ diagonal matrix with non-negative real entries. The diagonal values σ_{i} of $\boldsymbol{\Sigma}$ are known as the singular values of \mathbf{A}. These are also the square roots of the eigenvalues of $\mathbf{A}^{\top} \mathbf{A}$.
- \mathbf{V} is an $n \times n$ orthogonal matrix. The columns of \mathbf{V} are the right-singular vectors of \mathbf{A}.

1.10 Positive Definiteness

Positive definite: Symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive definite if, for all non-zero vector $\mathrm{x} \in \mathbb{R}^{n}$:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}>0
$$

Positive semi-definite: Symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive semi-definite if, for all non-zero vector $\mathrm{x} \in \mathbb{R}^{n}$:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \geq 0
$$

Positive definite means all eigenvalues >0, while positive semi-definite means all eigenvalues ≥ 0.

2 Calculus

2.1 Differentiation

$$
\begin{array}{r}
\text { Chain rule: } \frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x) \\
\text { Product rule: } \frac{d}{d x} f(x) g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
\text { Linearity: } \frac{d}{d x}(a f(x)+b g(x))=a f^{\prime}(x)+b g^{\prime}(x)
\end{array}
$$

for scalars a and b.
The Jacobian is a matrix where the $j^{t h}$ column is made up of the partial derivatives of f_{j} (the $j^{\text {th }}$ output value of \mathbf{f}) with respect to all input elements, rows $i=1$ to n.

$$
\frac{d \mathbf{f}(\mathbf{x})}{d \mathbf{x}}=\left[\begin{array}{ccc}
\frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{m}(\mathbf{x})}{\partial x_{1}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{1}(\mathbf{x})}{\partial x_{n}} & \cdots & \frac{\partial f_{m}(\mathbf{x})}{\partial x_{n}}
\end{array}\right]
$$

If f is scalar-valued, its derivative is a column vector we call the gradient vector:

$$
\frac{d f(\mathbf{x})}{d \mathbf{x}}=\left[\begin{array}{c}
\frac{\partial f(\mathbf{x})}{\partial x_{1}} \\
\frac{\partial f(\mathbf{x})}{\partial x_{2}} \\
\cdots \\
\frac{\partial f(\mathbf{x})}{\partial x_{n}}
\end{array}\right]
$$

The gradient vector points in the direction of steepest ascent in $f(\mathbf{x})$, which is useful for optimization.
A few important derivatives:

$$
\begin{aligned}
\frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial \mathbf{x}} & =\frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{x}}=\mathbf{a} \\
\frac{\partial \mathbf{a}^{\top} \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} & =\mathbf{a b}^{\top} \\
\frac{\partial(\mathbf{x}-\mathbf{A} \mathbf{s})^{T} \mathbf{W}(\mathbf{x}-\mathbf{A} \mathbf{s})}{\partial \mathbf{s}} & =-2 \mathbf{A}^{T} \mathbf{W}(\mathbf{x}-\mathbf{A} \mathbf{s}) \\
\frac{\partial \mathbf{a}^{\top} \mathbf{X}^{\top} \mathbf{b}}{\partial \mathbf{X}} & =\mathbf{b} \mathbf{a}^{\top} \\
\frac{\partial \mathbf{a}^{\top} \mathbf{X} \mathbf{a}}{\partial \mathbf{X}} & =\frac{\partial \mathbf{a}^{\top} \mathbf{X}^{\top} \mathbf{a}}{\partial \mathbf{X}}=\mathbf{a a}^{\top} \\
\frac{\partial \mathbf{X}}{\partial X_{i j}} & =\mathbf{J}^{i j \quad * * *}
\end{aligned}
$$

${ }^{* * *} \mathbf{J}$ is NOT the Jacobian, but rather, a matrix with all zeros except for a 1 in the i, j entry.
For more matrix derivatives, see the Matrix Cookbook linked on the course website.

2.2 Optimization

Local Extrema: The local extrema of a single-variable function can be found by solving $\frac{d \mathbf{f}(\mathbf{x})}{d \mathbf{x}}=\mathbf{0}$. However, this equation is often intractable. We can search for local minima numerically using gradient-based methods.

Gradient Descent: Start with an initial guess \mathbf{w}_{0} for the value of parameter w. At each step i, update our guess for \mathbf{w} by going in the direction of greatest descent of a loss function (opposite the gradient vector):

$$
\mathbf{w}_{i+1}=\mathbf{w}_{i}-\eta \frac{d f(\mathbf{w})}{d \mathbf{w}}
$$

where η is a learning rate. We stop when the value of the gradient is close to 0 .

3 Probability Theory

3.1 Random Variables

Discrete: Takes a value from a sample space \mathcal{X} of discrete values. $p(x)$ is the probability mass function of X and can also be written as $p_{X}(x)$. We say that $x \sim X(x$ is sampled from $X)$ when the value of x is picked in accordance with the distribution of X.

Continuous: Can take on a continuous range of values. $p(x)$ or $p_{X}(x)$ represents the probability density function of a continuous random variable. The probability of any one exact value is zero.

3.2 Expectation

The expected value (or expectation or mean) of a random variable can be thought of as the "weighted average" of the possible outcomes of the random variable. For discrete variables:

$$
\mathbb{E}_{x \sim p(x)}[X]=\sum_{x \in \mathcal{X}} x \cdot p(x) \quad \mathbb{E}[f(X)]=\sum_{x \in \mathcal{X}} f(x) p(x)
$$

For continuous variables:

$$
\mathbb{E}[X]=\int_{\mathcal{X}} x \cdot p(x) d x \quad \mathbb{E}[f(X)]=\int_{\mathcal{X}} f(x) p(x) d x
$$

Properties of expectation:

- $\mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c$
- $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$ if X and Y are independent

3.3 Variance

Variance is a measure of the spread of a random variable.

$$
\begin{aligned}
\operatorname{var}(X) & =\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}
\end{aligned}
$$

Properties of variance:

$$
\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)
$$

3.4 Joint Probability

The joint probability of $X=x$ and $Y=y$ is written as $p(x, y)$ or $p_{X Y}(x, y)$.
If X and Y are independent, then: $p(x, y)=p(x) p(y)$.
It will always be true that: $p(x, y)=p(x) p(y \mid x)=p(y) p(x \mid y)$
Convert a joint probability $p(x, y)$ to the marginal distribution of a single variable, e.g. $p(x)$, by summing:

$$
\text { Discrete: } p(x)=\sum_{y \in \mathcal{Y}} p(x, y) \quad \text { Continuous: } p(x)=\int_{y \in \mathcal{Y}} p(x, y)
$$

3.5 Conditional Probability

$X \mid Y$ represents the random variable X conditioned on the random variable Y.

$$
p(x \mid y)=\frac{p(x, y)}{p(y)}
$$

We can factor a joint probability into chains of conditional probabilities with the product rule:

$$
\begin{aligned}
p(x, y, z) & =p(x) p(y \mid x) p(z \mid x, y) \\
& =p(y) p(x \mid y) p(z \mid x, y) \\
& =p(z) p(x \mid z) p(y \mid x, z) \\
& =\text { etc... }
\end{aligned}
$$

3.6 Bayes' Theorem

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Since we are conditioning on y, that means y is constant and can be replaced with a normalizing constant:

$$
p(x \mid y) \propto p(y \mid x) p(x)
$$

3.7 Covariance

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

Properties of covariance: (supposing X, Y, Z have mean 0 and finite variances)

- Symmetric: $\operatorname{cov}(X, Y)=\operatorname{cov}(Y, X)$
- Positive Semi-definite: $\operatorname{cov}(X, X) \geq 0$
- Bilinear: $\operatorname{cov}(a X+b Y, Z)=a \operatorname{cov}(X, Z)+b \operatorname{cov}(Y, Z)$

The $n \times n$ covariance matrix (often denoted $\boldsymbol{\Sigma}$), where $\boldsymbol{\Sigma}_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)$ is the empirical covariance between the $i^{t h}$ and $j^{t h}$ features.

3.8 Conditional Expectation and Conditional Variance

The conditional expectation of X given $Y=y$ is: $\mathbb{E}[X \mid Y]$.
Similarly, conditional variance is: $\operatorname{var}(X \mid Y)=\mathbb{E}\left[(X-\mathbb{E}[X \mid Y])^{2} \mid Y\right]=\mathbb{E}\left[X^{2} \mid Y\right]-\mathbb{E}[X \mid Y]^{2}$
Properties:

- $\mathbb{E}[X]=\mathbb{E}[\mathbb{E}[X \mid Y]]$
- $\operatorname{var}[X]=\mathbb{E}[\operatorname{var}[X \mid Y]]+\operatorname{var}[\mathbb{E}[X \mid Y]]$

3.9 Gaussians

3.9.1 Univariate PDF

$$
\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

- If X, Y are independent normals then $X+Y \sim \mathcal{N}\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$
- $a X+b \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$
- Any PDF proportional to $\exp \left(a x^{2}+b x+c\right)$ must be a Gaussian PDF.

3.9.2 Multivariate PDF

Given dimension m, mean vector $\mu \in \mathbb{R}^{m}$, and covariance matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{m \times m}$,

$$
\mathcal{N}(\mathbf{x} ; \mu, \boldsymbol{\Sigma})=\frac{1}{\operatorname{det}(2 \pi \boldsymbol{\Sigma})^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu)\right)
$$

