
CS181 Section #0 Note, Condensed
Due: never

1 Linear Algebra

1.1 Scalars and Vectors

Scalar: A scalar is a single element of a field, e.g. 5.

Vector: A vector is an ordered collection of n coordinates, where each coordinate is a scalar of the
underlying field.

x =


x1
x2
...
xn


Norms: The formula for the Ln norm is given by:

||x||n =

√√√√ n∑
i=1

xni

Inner Product: Also called the dot product or scalar product, this is equal to:

〈u,v〉 =

n∑
i=1

uivi = ||u||2||v||2 cosα

where α is the angle between u and v. Note that: 〈u,u〉 = ||u||22, since α = 0.

1.2 Linear Independence

A set of non-zero vectors {v1, ...,vn} is linearly independent if the equation c1v1 + c2v2+, ...,+cnvn = 0
for scalars c1, ..., cn can only be satisfied by setting c1, ..., cn all to 0.

1.3 Spaces and Subspaces

Vector space: A vector space V is a collection of vectors that satisfy the following properties:

• Closure under scaling: ∀v ∈ V and scalars a, av ∈ V

• Closure under addition: ∀u,v ∈ V, (u + v) ∈ V

Orthonormal basis: The set of vectors {v1, ...,vn} form an orthonormal basis for V if they are all unit
vectors (”normal”) and if 〈vi,vj〉 = 0,∀i 6= j (”orthogonal”) where 〈, 〉 is the inner product.
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1.4 Scalar, Vector, and Subspace Projection

For vectors u,v ∈ V and v 6= 0, the scalar projection a of u onto v is computed as:

a =
〈u,v〉
||v||

Using this, the vector projection p of u onto v can be computed as:

a
( 1

||v||
v
)

=
〈u,v〉
〈v,v〉

v

The subspace projection p of u onto S can be expressed as the sum of the projections of u onto each
element of the basis of S:

p =

m∑
i=1

〈u, si〉
〈si, si〉

si

1.5 Matrices

A matrix is a rectangular array of scalars. We write matrices in bold uppercase.

If we have A ∈ Rn×m, then the matrix A is an n × m matrix that represents a linear transformation
from m to n dimensions, where A is an operator. Aij is the scalar found at the ith row and jth column.

A =

A11 A12 . . . A1m

...
. . .

...
An1 An2 . . . Anm


A typical linear transformation looks like the following, where x ∈ Rm,y ∈ Rn,A ∈ Rn×m:

y = Ax

1.6 Matrix Properties

• A> is the transpose of A and has A>ji = Aij .

• A is symmetric if Aij = Aji. That is, A = A>. Only square matrices can be symmetric.

• A is orthogonal if its rows and columns are orthogonal unit vectors. Consequence: A>A = AA> = I
where I is the identity matrix (ones on the main diagonal and zeros elsewhere). Orthogonal matrix
A has A> = A−1.

• Diagonal matrices have non-zero values on the main diagonal and zeros elsewhere.

• Upper-triangular matrices only have non-zero values on the diagonal or above (top right of matrix).

• Lower-triangular matrices only have non-zero values on the diagonal or below (bottom right of
matrix).
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1.7 Matrix Multiplication

AB is a valid matrix product if A is p × q and B is q × r (left matrix has same number of columns as
right matrix has rows).

Properties of matrix multiplication:

• AB 6= BA (usually)

• A(B + C) = AB + AC and (A + B)C = AC + BC.

• λ(AB) = (λA)B and (AB)λ = A(Bλ), for some scalar λ.

• (AB)> = B>A>

1.8 Rank, Determinant, Inverse

Rank: The rank of a matrix is the dimension of the vector space spanned by its column vectors. A matrix
is full rank if all its column vectors are linearly independent.

Determinant: The determinant of a square matrix is a scalar quantity. det(A) is equal to the product
of the eigenvalues of A. Note: You may also see the determinant denoted with single bars, e.g. |X|.

Inverse: The inverse A−1 “undoes” A much like multiplying by 1
x undoes multiplying by x. A−1 only

exists if det(A) 6= 0. It is a given that AA−1 = A−1A = I.

Moore-Penrose Pseudoinverse: The Moore-Penrose pseudoinverse A+ of A is a generalization of
the inverse to non-square matrices, where AA+A = A. However, AA+ may not be the general identity
matrix but maps all column vectors of A to themselves.

1.9 Eigen-Everything

Eigenvalues: If Ax = λx for some scalar λ, then λ is an eigenvalue of A and x is an eigenvector.

Eigen-decomposition: Let A be an n×n full-rank matrix with n linearly independent eigenvectors {qi}ni=1.
A can be factored into A = QΛQ−1 where Q is n×n and has qi for its ith column. Λ is a diagonal matrix
whose elements are the corresponding eigenvalues: Λii = λi. If a A can be eigen-decomposed and none of
its eigenvalues are 0, then A is nonsingular and its inverse is given by A−1 = QΛ−1Q−1 with Λ−1ii = 1

λi
.

Singular Value Decomposition: Generalizes eigen-decomposition to rectangular matrices. Let A be an
m× n matrix. Then A can be factored into UΣV> = UΣV−1 where

• U is m×m and orthogonal. The columns of U are the left-singular vectors of A.

• Σ is an m× n diagonal matrix with non-negative real entries. The diagonal values σi of Σ are known
as the singular values of A. These are also the square roots of the eigenvalues of A>A.

• V is an n× n orthogonal matrix. The columns of V are the right-singular vectors of A.

1.10 Positive Definiteness

Positive definite: Symmetric matrix A ∈ Rn×n is positive definite if, for all non-zero vector x ∈ Rn:

x>Ax > 0

3



Positive semi-definite: Symmetric matrix A ∈ Rn×n is positive semi-definite if, for all non-zero vector
x ∈ Rn:

x>Ax ≥ 0

Positive definite means all eigenvalues > 0, while positive semi-definite means all eigenvalues ≥ 0.

2 Calculus

2.1 Differentiation

Chain rule:
d

dx
f(g(x)) = f ′(g(x))g′(x)

Product rule:
d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x)

Linearity:
d

dx
(af(x) + bg(x)) = af ′(x) + bg′(x)

for scalars a and b.

The Jacobian is a matrix where the jth column is made up of the partial derivatives of fj (the jth output
value of f) with respect to all input elements, rows i = 1 to n.

df(x)

dx
=


∂f1(x)
∂x1

· · · ∂fm(x)
∂x1

...
. . .

...
∂f1(x)
∂xn

· · · ∂fm(x)
∂xn


If f is scalar-valued, its derivative is a column vector we call the gradient vector:

df(x)

dx
=


∂f(x)
∂x1
∂f(x)
∂x2

...
∂f(x)
∂xn


The gradient vector points in the direction of steepest ascent in f(x), which is useful for optimization.

A few important derivatives:

∂x>a

∂x
=
∂a>x

∂x
= a

∂a>Xb

∂X
= ab>

∂(x−As)TW(x−As)

∂s
= −2ATW(x−As)

∂a>X>b

∂X
= ba>

∂a>Xa

∂X
=
∂a>X>a

∂X
= aa>

∂X

∂Xij
= Jij ***
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*** J is NOT the Jacobian, but rather, a matrix with all zeros except for a 1 in the i, j entry.

For more matrix derivatives, see the Matrix Cookbook linked on the course website.

2.2 Optimization

Local Extrema : The local extrema of a single-variable function can be found by solving df(x)
dx = 0. However,

this equation is often intractable. We can search for local minima numerically using gradient-based methods.

Gradient Descent: Start with an initial guess w0 for the value of parameter w. At each step i, update
our guess for w by going in the direction of greatest descent of a loss function (opposite the gradient vector):

wi+1 = wi − η
df(w)

dw

where η is a learning rate. We stop when the value of the gradient is close to 0.

3 Probability Theory

3.1 Random Variables

Discrete: Takes a value from a sample space X of discrete values. p(x) is the probability mass function
of X and can also be written as pX(x). We say that x ∼ X (x is sampled from X) when the value of x is
picked in accordance with the distribution of X.

Continuous: Can take on a continuous range of values. p(x) or pX(x) represents the probability density
function of a continuous random variable. The probability of any one exact value is zero.

3.2 Expectation

The expected value (or expectation or mean) of a random variable can be thought of as the “weighted
average” of the possible outcomes of the random variable. For discrete variables:

Ex∼p(x)[X] =
∑
x∈X

x · p(x) E[f(X)] =
∑
x∈X

f(x)p(x)

For continuous variables:

E[X] =

∫
X
x · p(x)dx E[f(X)] =

∫
X
f(x)p(x)dx

Properties of expectation:

• E[aX + bY + c] = aE[X] + bE[Y ] + c

• E[XY ] = E[X]E[Y ] if X and Y are independent

3.3 Variance

Variance is a measure of the spread of a random variable.

var(X) = E[(X − E[X])2]

= E[X2]− (E[X])2
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Properties of variance:

var(aX + b) = a2var(X)

3.4 Joint Probability

The joint probability of X = x and Y = y is written as p(x, y) or pXY (x, y).

If X and Y are independent, then: p(x, y) = p(x)p(y).

It will always be true that: p(x, y) = p(x)p(y|x) = p(y)p(x|y)

Convert a joint probability p(x, y) to the marginal distribution of a single variable, e.g. p(x), by summing:

Discrete: p(x) =
∑
y∈Y

p(x, y) Continuous: p(x) =

∫
y∈Y

p(x, y)

3.5 Conditional Probability

X|Y represents the random variable X conditioned on the random variable Y .

p(x|y) =
p(x, y)

p(y)

We can factor a joint probability into chains of conditional probabilities with the product rule:

p(x, y, z) = p(x)p(y|x)p(z|x, y)

= p(y)p(x|y)p(z|x, y)

= p(z)p(x|z)p(y|x, z)
= etc...

3.6 Bayes’ Theorem

p(x|y) =
p(y|x)p(x)

p(y)

Since we are conditioning on y, that means y is constant and can be replaced with a normalizing constant:

p(x|y) ∝ p(y|x)p(x)

3.7 Covariance

cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

Properties of covariance: (supposing X,Y, Z have mean 0 and finite variances)

• Symmetric: cov(X,Y ) = cov(Y,X)

• Positive Semi-definite: cov(X,X) ≥ 0

• Bilinear: cov(aX + bY, Z) = acov(X,Z) + bcov(Y,Z)

The n × n covariance matrix (often denoted Σ), where Σij = cov(Xi, Xj) is the empirical covariance
between the ith and jth features.
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3.8 Conditional Expectation and Conditional Variance

The conditional expectation of X given Y = y is: E[X|Y ].

Similarly, conditional variance is: var(X|Y ) = E[(X − E[X|Y ])2|Y ] = E[X2|Y ]− E[X|Y ]2

Properties:

• E[X] = E[E[X|Y ]]

• var[X] = E[var[X|Y ]] + var[E[X|Y ]]

3.9 Gaussians

3.9.1 Univariate PDF

N (x;µ, σ2) =
1√
2πσ

exp

(
− 1

2σ2
(x− µ)2

)
• If X,Y are independent normals then X + Y ∼ N (µX + µY , σ

2
X + σ2

Y )

• aX + b ∼ N (aµ+ b, a2σ2)

• Any PDF proportional to exp(ax2 + bx+ c) must be a Gaussian PDF.

3.9.2 Multivariate PDF

Given dimension m, mean vector µ ∈ Rm, and covariance matrix Σ ∈ Rm×m,

N (x;µ,Σ) =
1

det(2πΣ)1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
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