
CS181 2020 Midterm 1 Practice Questions

1. Linear Regression

Consider a one-dimensional regression problem with training data {xi, yi}. We seek to fit a
linear model with no bias term:

ŷ = wx

a. Assume a squared loss 1
2

∑N
i=1(yi − ŷi)2 and solve for the optimal value of w∗.

b. What is the prediction for some new observation x, without mention of w?

c. Suppose that we have a generative model of the form ŷ = wx + ε, where ε ∼ N (0, σ2)
and w is known. Given a new x, what is the expression for the probability of ŷ?
Note: The univariate Gaussian PDF is:

N (a|µ, σ2) =
1√

2πσ2
exp
(−(a− µ)2

2σ2
)

d. Now assume that w is random and that we have a prior on w with known variance s20:

w ∼ N (0, s20)

Write down the form of the posterior distribution over w. Take logs and drop terms that
don’t depend on the data and prior parameters, but you do not need to simplify further
(i.e. you do not need to complete the square to make it look like a normal).

Solution:



2. Regularization

Suppose we wish to predict sales according to given characteristics of a sold item and its
sales outlet. Consider using a linear regression model y = wTx. We try three different loss
functions on our data set:
(a) No regularization: L(w) = 1

2

∑N
n=1(yn − wTxn)2

(b) LASSO regression: L(w) = 1
2

∑N
n=1(yn − wTxn)2 + λ

2 ||w||1
(c) Ridge regression: L(w) = 1

2

∑N
n=1(yn − wTxn)2 + λ

2 ||w||
2
2

We train our linear regression model for each loss function, which gives us different final
weights, or variable coefficients. The coefficients for each model are shown in the plots below
(in random order):

Now answer the following questions:
a. Which plot of weights corresponds to which loss function? Why?
b. How can we expect the plots to change as we increase λ?



Solution:



3. Linear Basis Functions
Linear basis functions φ(x) are often important in both regression and classification tasks.

h(x;w) = wTφ(x)

Without them, linear and logistic regression can only fit linear functions to the data. The
following question asks you to determine if a class of basis function can linearly separate the
data D = {(x, y)} = {(−π, 1), (0,−1), (π, 1)}. If so, find a setting of w that correctly classifies
the data-points (assuming a logistic regression setup).

a. φ(x) = [1, x]T

b. φ(x) = [1, x, x2]T

c. φ(x) = [1, x, x4]T

d. φ(x) = [1, cosx]T

Solution:



4. Probabilistic Linear Regression

In class, we derived the optimal w∗ to maximize the likelihood of training data given
normally distributed noise. In this problem, you will explore an alternative distribution on
the noise of labels y.

Assume 1-dimensional data x, and that

ε ∼ Lap(0, 1)

y|x, ε = wTx+ ε

where ε is a Laplace random variable. The probability density function for a Lap(µ, b) random
variable is given by

p(x) =
1

2b
exp(−|x− µ|

b
)

You can also take as given that when you linearly transform any Laplace random variable by
a constant, the distribution of the new transformed variable is still Laplace with a linearly
transformed mean. For example, if some random variable a ∼ Lap(0, c), then for any
constant b, a+ b ∼ Lap(0 + b, c).

a. What is the distribution of random variable (y|x)?

b. Given data {(xi, yi)}Ni=1, write down an expression for the likelihood of observing the
data in terms of unknown parameter w.

c. Write down an expression for the negative log likelihood of the data.

d. Recall from section 2.6.2 of the CS 181 textbook that for probabilistic regression
with normally distributed noise, minimizing our likelihood function was equivalent to
minimizing L2 loss L(y, ŷ).

Minimizing your expression from part (c) for Laplacian noise is equivalent to minimizing
what kind of loss function L(y, ŷ)?

e. Given that d
da |a| = sign(a), where sign(a) = 1 when a ≥ 0, sign(a) = −1 when a < 0,

take the gradient of the negative log likelihood with respect to w. You can leave your
expression in terms of the sign() operator.

Does this model class seem more or less sensitive to outliers than probabilistic regression
with normally distributed noise? Why?

Note: You won’t be expected to solve for the optimal w∗ in an expression with sign()
operators on the exam.



Solution:



5. Bayesian Linear Regression

Consider the following setup. Let D = {(xi, yi)}ni=1,xi ∈ Rm, yi ∈ R. Consider the model:

yi ∼ N (wTx, σ2)

The likelihood will then be:

P (y|X,w) = N (Xw, σ2I) =

|D|∏
i=1

1

σ
√

2π
exp

(
−(yi −wTXi)

2

2σ2

)
Apply a conjugate Gaussian prior, specifically one where each weight is i.i.d.:

P (w) = N (0, σ20I) =

|w|∏
j=1

1

σ0
√

2π
exp

(
−
w2
j

2σ20

)

a. Find the MAP estimate for the weights as a simplified argmax or argmin expression
in non-matrix form. You should NOT end up deriving the full posterior or finding a
closed form solution for the MAP. (Hint: recall wMAP = arg max

w
P (w|D))

b. What does the expression that you derived in part 1 remind you of?

c. What happens to the posterior with wider (larger σ20) or narrower (smaller σ20) prior?
In particular, how it will affect both the mean and the variance of the posterior. You
may want to make a connection based on the results in part b.

d. The prior used here is Gaussian, which has a PDF of the form:

P (w) =

|w|∏
j=1

1

σ0
√

2π
exp

(
−
w2
j

2σ20

)
∝
∏
j

exp(−w2
j )

Another popular prior uses a modification of the Laplace distribution, which can be
loosely thought of as a symmetric exponential distribution. The PDF of this distribution
is:

P (w) =

|w|∏
j=1

λ

2σ
exp

(
−λ|wj |
σ

)
∝
∏
j

exp(−|wj |)

How do you expect the result in part 1 to be different with a Laplacian prior instead of
a Gaussian prior? How do you expect the connection in part 2 to change? Answer this
conceptually without any math.



Solution:



6. Multiclass Classification
Suppose that we have a K-class classification scenario with training data {xi,yi}ni=1, where
the yi are 1-hot column vectors.

We model this problem using a neural network with d units in a single hidden layer, expressed
as a column vector φ(x; W,w0) ∈ Rd, which we write as φ. We take a linear combination
of these values and pass them to a softmax function to get a final set of K outputs. Let Ck
represent a 1-hot vector with a 1 in the kth index and let v` ∈ Rd be a column vector of
weights:

p(y = Ck|x; {v`}K`=1,W,w0) =
exp(v>k φ)∑K
`′=1 exp(v>`′φ)

a. Suppose we add the same global bias to each vector of weights in the final layer, i.e.
replace v>k φ with v>k φ+ v0 for some scalar v0 with the same scalar for all k. Does this
increase the expressivity of our model? Why or why not?

b. Write down and simplify the log likelihood of a particular observation (xi,yi), including
constants. Assume that we use a sigmoid activation function (don’t need to simplify
within the sigmoid, just the sums/logs/exps around it)

φ(x; W,w0) = σ(Wx + w0)

c. Consider the scenario of drawing items from a distribution and encoding them in binary
for communication. An efficient scheme encodes common items with a short code and
rare items with longer codes. The cross-entropy Ep(x)[− ln q(x)] can be interpreted as
the expected number of required bits to send a randomly chosen item x ∼ p(x) using a
code optimized for q(x). For classification, we can use the following as a loss:

Ep(y|x)[− ln q(y|x)]

where p(y|x) is 1 for the true class and is 0 otherwise and q(y = Ck|x) is your model’s
prediction (output of the softmax layer for kth class). Write down the expression for
the cross-entropy by unpacking the expectation and writing it as a sum of terms and
describe its relationship to the log loss in part (b).

Solution:





7. Probabilistic Generative Classification

Suppose that we use a Naive Bayes classifier to classify binary feature vectors x ∈ {0, 1}D
into two classes. The class conditional distributions will then be of the form

p(x | y = Ck) =
D∏
j=1

π
xj
kj (1− πkj)(1−xj)

where xj ∈ {0, 1}, and πkj = p(xj = 1 | y = Ck). This is a Bernoulli Naive Bayes, different
from Multinomial model in the notes in that all the features are binary instead of representing
count data. Assume also that the class priors are p(y = C1) = p(y = C2) = 1

2 .
a. How is the quantity ln(p(y = C1 |x)/p(y = C2 |x)) used for classification of a new

example x?
b. If D = 1 (i.e., there is only one feature), use the equations above to write out ln p(y=C1 |x)

p(y=C2 |x)
for a single binary feature x.

c. Now suppose we change our feature representation so that instead of using just a single
feature, we use two redundant features. (i.e., two features that always have the same
value). With this feature representation, instead of x we will use x = [x, x]>. What is

ln p(y=C1 |x)
p(y=C2 |x) in terms of the value for ln p(y=C1 |x)

p(y=C2 |x) you calculated in part (a.)?
d. Is this a bug or a feature?

Solution:



8. Overfitting and Underfitting

Harvard Insta-Ice Unit (HI2U) has built a robot that can deliver 24-hour shaved ice to
student houses. To prevent collisions, they train three different approaches to classify camera
images as containing nearby tourists or open space; if the robot identifies a tourist in its
path, it is programmed to halt. The performances of the classifiers are:

Training Accuracy Testing Accuracy

Classifier A 75.3% 74.8%

Classifier B 80.3% 77.8%

Classifier C 90.2% 60.0%

where Classifier B has a more expressive model class than A, and classifier C has both a
more expressive model class and more features than A. All the classifiers have closed-form
solutions, so HI2U is pretty sure that the inference is not hindering performance.

a. If you had to choose one: might Classifier A be overfitting or underfitting? Explain
your reasoning.

b. If you had to choose one: might Classifier C be overfitting or underfitting? Explain
your reasoning.

c. If you had to guess yes or no: might more training examples significantly boost the
test-time performance of Classifier A? Classifier C? Explain your reasoning.

Hint: try to relate your reasoning to model bias and model variance.

Solution:



9. Neural Networks Part 1
Consider the following 2-layer neural network, which takes in x ∈ R2 and has two ReLU
hidden units and a final sigmoid activation. Notice there are no bias weights on the hidden
units.

For a binary classification problem with true labels y ∈ {0, 1}, we will use the loss function
L = −(y log(ŷ) + (1− y) log(1− ŷ)).

a. Suppose we update our neural network with stochastic gradient descent on a data point
x = [x1x2]

T .
i. Calculate the gradient of the loss with respect to v1.
ii. Calculate the gradient of the loss with respect to w11.

b. Consider the classification of data points below. Is it possible that this classification was
generated by the set of weights w11, w12, w21, w22 = {1, 0, 0, 1}? Why or why not? What
if additional hidden layers were applied to further transform the data (still keeping the
specified set of weights fixed)?

c. i. Why is it a bad idea in general to have ReLU as the activation function of the output
layer?

ii. Suppose we want to classify our outputs into 5 categories. Why might it be a bad
idea to use the label set {1, 2, 3, 4, 5}? What could we use instead?



Solution:



10. Neural Networks Part 2
Consider the following non-linearity for use in a neural network:

f0/1(z) =

{
1 if z ≥ 0
0 otherwise

}
Let x be a binary feature vector of length 4: x ∈ {0, 1}4. Define neural network A as follows:

ŷA ← f0/1(w
>x + w0)

with weight vector w ∈ R4 and bias scalar w0 ∈ R.

Let xL = [x1, x2] and xR = [x3, x4]. Define neural network B as follows:

h1 ← f0/1(t
>xL + a)

h2 ← f0/1(u
>xR + b)

h← [h1, h2]

ŷB ← f0/1(v
>h + c)

with weight vectors t,u,v ∈ R2 and bias scalars a, b, c ∈ R. Basically, B can only look at the
two halves of the input separately and has an extra layer to merge the transformations on
the two halves of the input with another transformation:

x1

x2

x3

x4

ŷA

x1

x2

x3

x4

h1

h2

ŷB

a. i. Describe a logical formula on inputs that can be expressed by A but not by B and
provide weights for w and w0 that implement the formula in A (hint: think about
things you may want to do with binary vectors, e.g. ANDs, ORs)

ii. Provide an argument for why B cannot express this formula (we don’t expect a
rigorous proof, but try to give a complete and convincing argument).

iii. How might you change the architecture of B to fix this issue? What downside
might this have?

b. What is the concern about training the networks as currently defined? What change
would you make to the network to alleviate this concern?

c. State two ways in which a validation set can be used when training neural networks
(one sentence for each is fine).



Solution:


