CS181 2020 Midterm 1 Practice Questions

1. Linear Regression

Consider a one-dimensional regression problem with training data {z;,y;}. We seek to fit a
linear model with no bias term:
Uy = wx

a. Assume a squared loss % Zfil(yi — §;)? and solve for the optimal value of w*.

b. What is the prediction for some new observation x, without mention of w?

c. Suppose that we have a generative model of the form § = wx + ¢, where € ~ N(0, 0?)
and w is known. Given a new x, what is the expression for the probability of ¢7
Note: The univariate Gaussian PDF is:
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d. Now assume that w is random and that we have a prior on w with known variance sg:
w ~ N(0,s3)

Write down the form of the posterior distribution over w. Take logs and drop terms that
don’t depend on the data and prior parameters, but you do not need to simplify further
(i.e. you do not need to complete the square to make it look like a normal).

Solution

a. This question is mostly just math. Take the derivative with respect to w, set it equal to
0, and solve for w:
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b. Here we just plug in from above:



c. This is a definitions question. use the form of the univariate Gaussian:

1 —(y —wa)?
— 2y
p(ylr) = N(ylwz,0%) = 27wQexp( 553 )
d. Here we combine everything above.
Prior:
p(w) = N (w0, 55)
Likelihood:
N
p(Dlw) = p(y|x, w) = [N (yilwz, 0?)
i=1
Posterior:
N
p(w| D) o< p(w)p(Dw) = N(wl0,s5) | [ N (wilwzi, 0®)
i=1
Take logs:
Inp(w|D) = const + 7_102 + iv: —(i —wa)” wii)’
P 2s3 pat 202

Worth noting similarity to ridge regression.

End Solution




2. Regularization
Suppose we wish to predict sales according to given characteristics of a sold item and its
sales outlet. Consider using a linear regression model y = w”z. We try three different loss
functions on our data set:

(a) No regularization: L(w) = ;5 Zn 1Y — wTzy,)?

(b) LASSO regression: L(w) = 2Zn V(yn — wl2,)? + 3wy

(c) Ridge regression: L(w) = QZn L(yn — wTzn)? + 3|w]|3

We train our linear regression model for each loss function, which gives us different final
weights, or variable coefficients. The coefficients for each model are shown in the plots below
(in random order):
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Now answer the following questions:
a. Which plot of weights corresponds to which loss function? Why?
b. How can we expect the plots to change as we increase \?




Solution

a. The first plot corresponds to ridge regression since it has slightly smaller weights than
the second plot, but the weights are not zeroed out. The second plot corresponds to no
regularization, as its weights haven’t zeroed out and they are the largest of the three.
The third plot corresponds to LASSO regression because many of the weights have been
driven to 0, and lasso regression leads to sparse solutions.

b. As we increase A, larger weights get more penalized. Thus, we can predict that weights
will be smaller overall in the ridge regression case, and that the weights will be even
more sparse in the lasso regression case. As for the no regularization case, we should
expect no difference, since A doesn’t affect it.

Note: Plots are from https://www.analyticsvidhya.com/blog/2017/06/a-comprehensive-guide-
for-linear-ridge-and-lasso-regression/.

End Solution



https://www.analyticsvidhya.com/blog/2017/06/a-comprehensive-guide-for-linear-ridge-and-lasso-regression/
https://www.analyticsvidhya.com/blog/2017/06/a-comprehensive-guide-for-linear-ridge-and-lasso-regression/

3. Linear Basis Functions

Linear basis functions ¢(z) are often important in both regression and classification tasks.

hz;w) = w' ¢(2)

Without them, linear and logistic regression can only fit linear functions to the data. The
following question asks you to determine if a class of basis function can linearly separate the
data D = {(z,y)} = {(—7,1),(0,—-1), (m,1)}. If so, find a setting of w that correctly classifies
the data-points (assuming a logistic regression setup).

a. ¢(x) = [17$]T

b. ¢(z) = [1,2, 2?7
¥ ¢($) - [17x>$4]T
d. ¢(z) =[1,cosz]|"

Solution

a. No, this choice of basis cannot perfectly separate the data.
b. Yes. Set w = [-1,0,1]7.

c. Yes. Set w = [~1,0,1]%.

d. Yes. Set w = [0, —1]7.

End Solution




4. Probabilistic Linear Regression

In class, we derived the optimal w* to maximize the likelihood of training data given
normally distributed noise. In this problem, you will explore an alternative distribution on
the noise of labels y.

Assume 1-dimensional data x, and that

e ~ Lap(0,1)
ylz,e =wlz + ¢

where € is a Laplace random variable. The probability density function for a Lap(u, b) random
variable is given by

|z —
(-4
You can also take as given that when you linearly transform any Laplace random variable by
a constant, the distribution of the new transformed variable is still Laplace with a linearly
transformed mean. For example, if some random variable a ~ Lap(0,c), then for any
constant b, a +b ~ Lap(0 + b, c).

1
p(x) = 5 exp

a. What is the distribution of random variable (y|x)?

b. Given data {(z;,y;)}Y,, write down an expression for the likelihood of observing the
data in terms of unknown parameter w.

c. Write down an expression for the negative log likelihood of the data.

d. Recall from section 2.6.2 of the CS 181 textbook that for probabilistic regression
with normally distributed noise, minimizing our likelihood function was equivalent to
minimizing L2 loss L(y, 7).

Minimizing your expression from part (c) for Laplacian noise is equivalent to minimizing
what kind of loss function L(y,9)?

e. Given that d%|a] = sign(a), where sign(a) = 1 when a > 0, sign(a) = —1 when a < 0,
take the gradient of the negative log likelihood with respect to w. You can leave your
expression in terms of the sign() operator.

Does this model class seem more or less sensitive to outliers than probabilistic regression
with normally distributed noise? Why?

Note: You won’t be expected to solve for the optimal w* in an expression with sign()
operators on the exam.




Solution

d.

€.

ylz ~ Lap(uw”z, 1)

p(Dlw) = p(Y|X, w)

N
= [[p(ilzi, w
=1
ﬁl le'i|)
Py 2 1

o exp(— Z!yz w' i)

N]Og Z ’yz w xz‘

= Nlog(2 —i—Z\yz w? ]

My expression from (c) is equivalent to minimizing L1 loss of (y; — w” z;).

N
d T
Tw (Nlog(Q) + Z ly; —w %’)

i=1
N
0=— Z sign(y; — wT:):Z'):Ui
i=1

This model class (L1 loss) is less sensitive to outliers than normally distributed noise
(L2 loss). L2 loss magnifies large differences (y — #)? much more than L1 loss; as such
outliers in L2 contribute much more to the overall loss over a given dataset.

End Solution




5. Bayesian Linear Regression

Consider the following setup. Let D = {(x;,y:)}1_;,%xi € R™,y; € R. Consider the model:
yi ~ N(wlx, o?)

The likelihood will then be:

i _ WwTX )2
P(y|X,w) = N(Xw,o’T) = [| L exp (_(?JX))

L1 oV2T 202
=1

Apply a conjugate Gaussian prior, specifically one where each weight is i.i.d.:

W]

P(w)=N(0,01) =[]

j=1

1 w?
exp | ——%
ooV 2 P 203

a. Find the MAP estimate for the weights as a simplified argmax or argmin expression
in non-matrix form. You should NOT end up deriving the full posterior or finding a
closed form solution for the MAP. (Hint: recall wy;4p = arg max P(w|D))

w

b. What does the expression that you derived in part 1 remind you of?

c. What happens to the posterior with wider (larger o3) or narrower (smaller o3) prior?
In particular, how it will affect both the mean and the variance of the posterior. You
may want to make a connection based on the results in part b.

d. The prior used here is Gaussian, which has a PDF of the form:

W]

1 w?
P(w) = H O_Omexp (—%‘g> o 1;Iexp(—wj2-)

J=1

Another popular prior uses a modification of the Laplace distribution, which can be
loosely thought of as a symmetric exponential distribution. The PDF of this distribution

is:
|w|

Pw) = [T g5 o0 (“) o [exp(lus)
Jj=1 J

How do you expect the result in part 1 to be different with a Laplacian prior instead of

a Gaussian prior? How do you expect the connection in part 2 to change? Answer this

conceptually without any math.




Solution

a. The MAP is expressed as an arg max of the posterior, which immediately suggest Bayes’
Rule with the proportionality and log trick.

warap = argmax P(w|D)
w
= argmax P(D|w)P(w)
w
= argmax log P(D|w) + log P(w)
w
|D| T \2 hd 2
1 (yi —w'X;) > 1 w;
= argmax lo exp| ————"— ) +1o exp | ——%
S gga 27 p< 202 gjl;[l ooV 2T P 203
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(yi —w'X;) wj
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| D] d
o1 T2, L 2
= argmin 5— Z.E_l(yi —w X;)* + ﬂ g wj

2
. o
= argmin Z(yz —wiX;)?+ —5 Zw?

The normalizing constants can be dropped since they do not affect the argmax. The
last step, in particular, involves multiplying the entire expression by o2, which does
not change the maximization. Furthermore, maximizing the expression is the same as
minimizing its negation to yield the above result.

b. The expression resembles a loss function, particularly with the first term literally being
the squared error. The second term is simply a sum of squared weights, which is the
penalization term in ridge regression. In fact, the entire expression is exactly the same
as the Lo penalized loss used by ridge regression! To make the connection even more
concrete, note that:

| D] [w]
_ : . TX' 2 A 2
wyap =argmin Y (y; —w' X;)° + w;
w . .
i=1 7j=1
o2
where A = —, which is now in the exact same form as ridge regression, with a penal-
o
0

ization weight A that can be directly expressed as a ratio of the likelihood variance and
prior variance. In other words, adding a Bayesian prior is the same as regularization!

¢. A prior with higher variance suggests more uncertainty, so intuitively, the posterior
will be wider as well and have higher variance due to the greater initial uncertainty.
Consequently, a narrower prior will result in a narrower posterior.



However, it is not just the variance of the posterior that is affected, but also the mean
(which is also the MAP), which actually has a strong connection to regularization. With
a wider prior, due to the greater initial uncertainty, the posterior will rely more heavily
on the data through the likelihood. With a narrower prior suggesting greater initial
confidence, the posterior will be more restricted by the prior (i.e. pulled closer to the
prior mean of 0), which is the exact effect of regularization and goes to show yet again
how a Bayesian prior has a regularizing effect.

. The Laplace distribution PDF uses the absolute value of the weights, rather than the
square of the weights. Since the rest of the form is effectively the same proportional to
the Gaussian PDF, the result can be expected to be the same as was derived in part 1
except with the sum of absolute weights instead of squared weights in the second term.
In other words, the penalization will then be the Li norm instead of the Lo norm, so
the use of a Laplacian prior is the Bayesian equivalent of LASSO regression.

End Solution




6. Multiclass Classification

Suppose that we have a K-class classification scenario with training data {z;,y;}!" ,, where
the y; are 1-hot column vectors.

We model this problem using a neural network with d units in a single hidden layer, expressed
as a column vector ¢(x; W, wg) € RY, which we write as ¢. We take a linear combination
of these values and pass them to a softmax function to get a final set of K outputs. Let Cg
represent a 1-hot vector with a 1 in the k** index and let vy € R? be a column vector of
weights:

-
exp(vy, @)
p(y = Crlx; {Vﬁ}lev W, wo) = K b T

ZE/:1 exp(ve, ?)
a. Suppose we add the same global bias to each vector of weights in the final layer, i.e.
replace v;qb with v;q& + vg for some scalar vy with the same scalar for all k. Does this

increase the expressivity of our model? Why or why not?

b. Write down and simplify the log likelihood of a particular observation (x;,y;), including
constants. Assume that we use a sigmoid activation function (don’t need to simplify
within the sigmoid, just the sums/logs/exps around it)

o(x; W, wp) = o(Wx + wy)

c. Consider the scenario of drawing items from a distribution and encoding them in binary
for communication. An efficient scheme encodes common items with a short code and
rare items with longer codes. The cross-entropy E,)[—Ing(z)] can be interpreted as
the expected number of required bits to send a randomly chosen item z ~ p(z) using a
code optimized for g(x). For classification, we can use the following as a loss:

Ep(y\x) [_ In Q(y|x)]

where p(y|x) is 1 for the true class and is 0 otherwise and ¢(y = Cg|x) is your model’s
prediction (output of the softmax layer for k" class). Write down the expression for
the cross-entropy by unpacking the expectation and writing it as a sum of terms and
describe its relationship to the log loss in part (b).

Solution

a. The same vg is added into the exp in the numerator and into each of the exps summed
in the denominator. vy is constant with respect to choice of a particular class:

1
ply = il {veh W.wo) = —— exp(v] ¢+ )

1 T
— — exp(v] ) exp(vo)

1 T
= exp(v
const’ P(vi ®)

So this is effectively the same as the original formula.



b. Assume that y; is in class k:

exp(v] ¢)
S exp(v] ¢)

K
=vi¢—In) exp(v/ )

(=1

Inp(y = Cklx; {v¢}, W,wp) = In

K
=v]io(Wx+wp) —In Z exp(v/) o(Wx + wg))
(=1

c. This is a comprehension question. Here p(y|x) is our true data, and ¢(y|x) is our model,
ie.:

p(y = Cilx; {ve}, W, wo)

The expectation here is computed empirically as the sum over the data, and the inner
term is just applying our model.

N
> EByayilxo = Ina(yilxi)] =
=1
N K
=3 plyi = Celxi) Inglyi = Cilx;) =
=1 (=1

N
- Z In Q(yi = Ctrue|xi)
=1

The inner sum drops out because p is the true data distribution, which assigns probability
0 to all Cp except for the true class Cyye. Finally, you should recognize the last term,
with ¢ as our estimated distribution, as the same as our loss.

End Solution




7. Probabilistic Generative Classification

Suppose that we use a Naive Bayes classifier to classify binary feature vectors x € {0, 1}D
into two classes. The class conditional distributions will then be of the form

D
px|y =Ck) = [ [ mes (1 —mpy) %)
j=1

where z; € {0,1}, and m,; = p(x; = 1|y = Cj). This is a Bernoulli Naive Bayes, different
from Multinomial model in the notes in that all the features are binary instead of representing
count data. Assume also that the class priors are p(y = C1) = p(y = Cs) = %
a. How is the quantity In(p(y = C1|x)/p(y = C2|x)) used for classification of a new
example x7
b. If D =1 (i.e., there is only one feature), use the equations above to write out In
for a single binary feature x.
c. Now suppose we change our feature representation so that instead of using just a single
feature, we use two redundant features. (i.e., two features that always have the same
value). With this feature representation, instead of x we will use x = [z,2]". What is

p(y=C1 | z)
p(y=Ca|x)

In % in terms of the value for In % you calculated in part (a.)?
d. Is this a bug or a feature?
Solution

a. We will predict class C if p(y = Ci|x) > p(y = C2|x), and class Cy otherwise.
Equivalently, we will predict C if In(p(y = C1 | x)/p(y = C2|x)) > 0, and C5 otherwise.

b. Because the class priors are the same and the denominators cancel, we have p(y =
Cilz)/ply = Colz) = ply = Co)p(zly = C1)/ply = Co)p(z|y = Co) = plrly =
C1)/p(x |y = Cq), and we have:

1-z)

WPy =Culo) o (1= m)

ply=Calz) w5 (1= m)=0)
=xlnm + (1 — x) ln(l — 7T11) —xlnmy — (1 — .ZL‘) ln(l — 7T21)

c. Because the two features are identical, we will have

N2
In p(y = C1|x) —In (Wfl (1- 7711)(1 ))
p(y = Ca|x) (7% (1— F21)(1_x))2
2
(1= m10) )
=In
751 (1 — oy ) (1)
ply = C1|2)
=2ln—F—=
p(y = C2| )

(above, we use x to mean either redundant feature in x and dropped the subscripts)



d. This is a feature! We see that the classifier with the two identical features has exactly
the same behavior as the classifier with just a single feature. In particular,

L =C1[x)

ply = Ci =)
In————=
ply = C2[x)

>0 <
- p(y = Ca| )

>0

Note: it does not matter that there is a new constant 2 in front of the expression. Only
the sign is important for classification.

End Solution




8. Overfitting and Underfitting

Harvard Insta-Ice Unit (HI2U) has built a robot that can deliver 24-hour shaved ice to
student houses. To prevent collisions, they train three different approaches to classify camera
images as containing nearby tourists or open space; if the robot identifies a tourist in its
path, it is programmed to halt. The performances of the classifiers are:

Training Accuracy Testing Accuracy
Classifier A 75.3% 74.8%
Classifier B 80.3% 77.8%
Classifier C 90.2% 60.0%

where Classifier B has a more expressive model class than A, and classifier C has both a
more expressive model class and more features than A. All the classifiers have closed-form
solutions, so HI2U is pretty sure that the inference is not hindering performance.

a. If you had to choose one: might Classifier A be overfitting or underfitting? Explain
your reasoning.

b. If you had to choose one: might Classifier C be overfitting or underfitting? Explain
your reasoning.

c. If you had to guess yes or no: might more training examples significantly boost the
test-time performance of Classifier A? Classifier C? Explain your reasoning.

Hint: try to relate your reasoning to model bias and model variance.

Solution

a. Likely it is underfitting, demonstrated by the results of Classifier B. This is likely a bias
issue, as we have evidence that a richer model can improve on training accuracy.

b. Likely it is overfitting. 90% training accuracy indicates very little bias, but poor test
accuracy shows variance issues.

c. It seems unlikely that more training will help A. There is no indication of a variance
issue (train/test accuracy are similar). However for classifier C, more training data
would reduce the variance of the rich model.

End Solution




9. Neural Networks Part 1

Consider the following 2-layer neural network, which takes in z € R? and has two ReLU
hidden units and a final sigmoid activation. Notice there are no bias weights on the hidden
units.

y = o(v,ReLU(z,) + v,ReLU(z,) + v,)

+
1" X1 w21 x2

Z, =W
Z,= W12X1 + WZZXZ

ReLU(z,) ReLU(z) = max(0, )

For a binary classification problem with true labels y € {0,1}, we will use the loss function
L = —(ylog(y) + (1 — y)log(1 — 9)).

a. Suppose we update our neural network with stochastic gradient descent on a data point
T = [z120]7.
i. Calculate the gradient of the loss with respect to vy.
ii. Calculate the gradient of the loss with respect to wi.
b. Consider the classification of data points below. Is it possible that this classification was
generated by the set of weights w11, w12, w1, wee = {1,0,0,1}? Why or why not? What
if additional hidden layers were applied to further transform the data (still keeping the

specified set of weights fixed)?

4 o

c. i. Why is it a bad idea in general to have ReLLU as the activation function of the output
layer?
ii. Suppose we want to classify our outputs into 5 categories. Why might it be a bad
idea to use the label set {1,2,3,4,5}? What could we use instead?




Solution

b.

C.

ngl = —(y/i+ (y—1)/(1=9)) - §(1 = §) - ReLU(=1)

= —(y(1—9)+ (y—1)§) - ReLU(z)
=(J—vy) - ReLU(z1)

ii.

OL )i+ =)/ —9) - §(1—5)- o1 - OReLU(z1)

=—(l -9 +y—1)7) vi -1
=(g—y) -v1-z1 if 21 >0, 0 otherwise

81011 31011

Regardless of whether there are additional hidden layers, this classification could not
have been generated by the given weights. As described, all points in the bottom left
quadrant would map to the origin, so it is not possible for points of differing predicted
label to be in that quadrant.

i. If the values entering the ReLU layer are mostly negative, gradients will fail to
backpropagate through the network.

ii. The numerical values carry unintended meaning; our model will assume that cate-
gories 1 and 2 are similar, whereas 1 and 5 are very distinct. We can fix the problem
by using one-hot encoding.

End Solution




10. Neural Networks Part 2

Consider the following non-linearity for use in a neural network:

1 ifz>0
Jop(2) _{ 0 otherwise }

Let x be a binary feature vector of length 4: x € {0, 1}*. Define neural network A as follows:
ya <+ fos1(w'x + wp)

with weight vector w € R* and bias scalar wg € R.

Let x = [x1, 22] and x® = [23, 24]. Define neural network B as follows:

hy + fop (6T x" + a)
hy + foj1(u'x® +b)
h « [hy, ho]

yp < fopn(v h+c)

with weight vectors t,u, v € R? and bias scalars a, b, c € R. Basically, B can only look at the
two halves of the input separately and has an extra layer to merge the transformations on
the two halves of the input with another transformation:

a. 1. Describe a logical formula on inputs that can be expressed by A but not by B and
provide weights for w and wy that implement the formula in A (hint: think about
things you may want to do with binary vectors, e.g. ANDs, ORs)

ii. Provide an argument for why B cannot express this formula (we don’t expect a
rigorous proof, but try to give a complete and convincing argument).

iii. How might you change the architecture of B to fix this issue? What downside
might this have?

b. What is the concern about training the networks as currently defined? What change
would you make to the network to alleviate this concern?

c. State two ways in which a wvalidation set can be used when training neural networks
(one sentence for each is fine).




Solution

b.

C.

i. One that works is to detect if three or more dimensions are 1:

4
Z.Ij 2 3
j=1

Easy to see that this is solvable with network A:
4
Z U)j.Tj -3 2 0
j=1

with w; = 1 for all j.

ii. This can’t work for network B though. Argument is that there are 5 cases with at
least three 1’s:

1111,0111,,1011, 1101, 1110

However, to detect any of the latter four patterns, either side of B’s middle layer,
h1 and hs, needs to be able to pick up the pattern 01 or 10. But that means that
the both hy and hg will fire 1’s for:

0101, 1010, 0110, 1001

ili. The easiest answer is to add more connections. Alternative answer is to add more
basis functions. Either way, the downside is that you are adding more parameters
to train to the model.

As defined, the networks use the 0/1 activation for its basis functions. Similarly to
using 0/1 in final layers, this means that the gradients cannot pass back to the weight
parameters and they cannot be learned. The easiest way to alleviate this is to switch to
the sigmoid o activation, which is a smooth approximation of 0/1.

i. Validation can be used to set the regularization parameters of the network.

ii. Validation can be used to structure the architecture of the network, by helping to
select size and connection properties of layers.

End Solution




