
CS181-S20

Assignment #6
Due: 11:59pm April 26, 2020

Homework 6: Inference in Graphical Models, MDPs

Introduction

In this assignment, you will practice inference in graphical models as well as MDPs/RL. For readings, we
recommend Sutton and Barto 2018, Reinforcement Learning: An Introduction, CS181 2017 Lecture Notes,
and Section 9 and 10 Notes.

Please type your solutions after the corresponding problems using this LATEX template, and start each
problem on a new page.

Please submit the writeup PDF to the Gradescope assignment ‘HW6’. Remember to assign pages
for each question.

Please submit your LATEX file and code files to the Gradescope assignment ‘HW6 - Supplemen-
tal’.

You can use a maximum of 2 late days on this assignment. Late days will be counted based on the latest
of your submissions.

http://incompleteideas.net/book/the-book-2nd.html
https://harvard-ml-courses.github.io/cs181-web-2017/

Problem 1 (Explaining Away, 10 pts)

In this problem, you will carefully work out a basic example with the explaining away effect. There
are many derivations of this problem available in textbooks. We emphasize that while you may refer to
textbooks and other online resources for understanding how to do the computation, you should do the
computation below from scratch, by hand.

We have three binary variables, rain r, grass-wet g, and sprinkler s. The conditional probability tables
look like the following:

p(r = 1) = 0.25

p(s = 1) = 0.5

p(g = 1|r = 0, s = 0) = 0

p(g = 1|r = 1, s = 0) = .75

p(g = 1|r = 0, s = 1) = .75

p(g = 1|r = 1, s = 1) = 1

Note that before attempting the problems below, it may be helpful to first prove something about the
independence/dependence relationships between r, g, and s based on the information above.

1. You check on the sprinkler without checking on the rain or the grass. What is the probability
that it is on?

2. You notice it is raining and check on the sprinkler without checking the grass. What is the
probability that it is on?

3. You notice that the grass is wet and go to check on the sprinkler (without checking if it is raining).
What is the probability that it is on?

4. You notice that it is raining and the grass is wet. You go check on the sprinkler. What is the
probability that it is on?

5. What is the explaining away effect that is shown above?

Solution

Problem 2 (Policy and Value Iteration, 15 pts)

This question asks you to implement policy and value iteration in a simple environment called Gridworld.
The “states” in Gridworld are represented by cells on the board. Here we show each state and its reward:

The set of all actions is {N, S, E, W}, which corresponds to moving north (up), south (down), east (right),
and west (left) on the grid. Taking an action in Gridworld does not always succeed with probability 1;
instead the agent has probability 0.1 of “slipping” into a state on either side. For example, if the agent
tries to go up, the agent may end up going to the left or to the right by mistake, but never down. Moving
into a wall (off the edge of the grid) also will keep the agent in the same state with high probability,
but the agent may end up slipping to a state on either side (defined as before) with probability 0.1. Let
discount factor γ = 0.75.

Code used to represent the grid is in gridworld.py. Your job is to implement the below methods in
file T6 P2.py. You do not need to modify or call any function in the gridworld.py file to
complete this question. Please use the helper functions in T6 P2.py to implement your
solution.

Do not use any outside code, and complete this problem yourself. Embed all plots in your writeup.

1a. To help you understand the code, complete each TODO in function print grid representations().
Read all comments in the function. Your solution should not require calling or modifying any func-
tion in gridworld.py, and should instead only use the helper functions in T6 P2.py. You do not
need to include anything in your writeup for this part.

Important: For parts 2 and 3, the state space is represented using flattened indices (ints)
rather than unflattened indices (tuples). Therefore value function V is a 1-dimensional array of
length state count. If you get stuck, printing the unflattened indices (so you can easily visualize
positions on the board) may help you debug your code.

For the following parts, please set variable run part one in line 7 of the file to False. You can
change the number of iterations that your code is run by changing the max iter and print every

parameters of the learn strategy function calls at the end of the code.

See the next page for parts 2 and 3.

Problem 2 (cont.)

2a. Implement function policy evaluation. Your solution should iteratively learn value function V
using convergence tolerance theta = 0.01. (i.e., if V (t) represents V on the tth iteration of your
policy evaluation procedure, then if |V (t+1)[s]− V (t)[s]| ≤ θ for all s, then return V (t+1).)

2b. Implement function update policy iteration. For every 2nd iteration of policy iteration, include
a plot of the learned value function and the optimal policy at each state for 10 total iterations
(max iter = 10).

These plots of the learned value function and optimal policy at each state are automatically created
and saved to your homework directory when you run T6 P2.py. Do not modify the given plotting
code. Include your 5 plots in your homework submission writeup. For each part of Problem 2,
please fit all the the plots for that part onto one page of your writeup.

2c. How many iterations does it take for the policy to converge? (Hint: change print every = 1 to
see the policy and value plots for every iteration!)

3a. Implement function update value iteration. For every 2nd iteration of value iteration, include
a plot of the learned value function and the optimal policy at each state for 10 total iterations
(max iter = 10). Include all plots in your writeup.

3b. Set the convergence tolerance for value iteration to 0.1 by setting parameter ct = 0.1 in the
learn strategy function call for value iteration. How many iterations does it take for the values
to converge? Include a plot in your writeup of the learned value function and the optimal policy
at this final state.

Solution

Problem 3 (Reinforcement Learning, 20 pts)

In 2013, the mobile game Flappy Bird took the world by storm. You’ll be developing a Q-learning agent
to play a similar game, Swingy Monkey (See Figure 1a). In this game, you control a monkey that is
trying to swing on vines and avoid tree trunks. You can either make him jump to a new vine, or have
him swing down on the vine he’s currently holding. You get points for successfully passing tree trunks
without hitting them, falling off the bottom of the screen, or jumping off the top. There are some
sources of randomness: the monkey’s jumps are sometimes higher than others, the gaps in the trees
vary vertically, the gravity varies from game to game, and the distances between the trees are different.
You can play the game directly by pushing a key on the keyboard to make the monkey jump. However,
your objective is to build an agent that learns to play on its own.

You will need to install the pygame module (http://www.pygame.org/wiki/GettingStarted).

Task

Your task is to use Q-learning to find a policy for the monkey that can navigate the trees. The
implementation of the game itself is in file SwingyMonkey.py, along with a few files in the res/ directory.
A file called stub.py is the starter code for setting up your learner that interacts with the game. This is
the only file you need to modify (but to speed up testing, you can comment out the animation rendering
code in SwingyMonkey.py). You can watch a YouTube video of the staff Q-Learner playing the game
at http://youtu.be/l4QjPr1uCac. It figures out a reasonable policy in a few dozen iterations.

You’ll be responsible for implementing the Python function action_callback. The action callback will
take in a dictionary that describes the current state of the game and return an action for the next time
step. This will be a binary action, where 0 means to swing downward and 1 means to jump up. The
dictionary you get for the state looks like this:

{ ’score’: <current score>,

’tree’: { ’dist’: <pixels to next tree trunk>,

’top’: <height of top of tree trunk gap>,

’bot’: <height of bottom of tree trunk gap> },

’monkey’: { ’vel’: <current monkey y-axis speed>,

’top’: <height of top of monkey>,

’bot’: <height of bottom of monkey> }}

All of the units here (except score) will be in screen pixels. Figure 1b shows these graphically.

Note that since the state space is very large (effectively continuous), the monkey’s relative position
needs to be discretized into bins. The pre-defined function discretize_state does this for you.

Requirements

Code: First, you should implement Q-learning with an ε-greedy policy yourself. You can increase the
performance by trying out different parameters for the learning rate α, discount rate γ, and ε. Do not
use outside RL code for this assignment. Second, you should use a method of your choice to further
improve the performance. This could be inferring gravity at each epoch (the gravity varies from game
to game), updating the reward function, trying decaying epsilon greedy functions, changing the features
in the state space, and more. One of our staff solutions got scores over 800 before the 100th epoch, but
you are only expected to reach scores over 50 before the 100th epoch. Make sure to turn in your
code!

Evaluation: In 1-2 paragraphs, explain how your agent performed and what decisions you made and
why. Make sure to provide evidence where necessary to explain your decisions. You must include in
your write up at least one plot or table that details the performances of parameters tried (i.e. plots of
score vs. epoch number for different parameters).

http://www.pygame.org/wiki/GettingStarted
http://youtu.be/l4QjPr1uCac

(a) SwingyMonkey Screenshot

state[’tree’][’dist’]

state[’tree’][’top’]

state[’tree’][’bot’]
state[’monkey’][’bot’]

state[’monkey’][’top’]

state[’monkey’][’vel’]

state[’score’]

(b) SwingyMonkey State

Figure 1: (a) Screenshot of the Swingy Monkey game. (b) Interpretations of various pieces of the state
dictionary.

Solution

Name

Collaborators and Resources

Whom did you work with, and did you use any resources beyond cs181-textbook and your notes?

Calibration

Approximately how long did this homework take you to complete (in hours)?

