
CS181-S20

Assignment #2
Due: 11:59pm Feb 21st, 2020

Homework 2: Classification and Bias-Variance Trade-offs

Introduction

This homework is about classification and bias-variance trade-offs. In lecture we have primarily focused on
binary classifiers trained to discriminate between two classes. In multiclass classification, we discriminate
between three or more classes. We encourage you to read CS181 Textbook’s Chapter 3 for more information
on linear classification, gradient descent, classification in the discriminative setting (covers multiclass logistic
regression and softmax), and classification in the generative setting. Read Chapter 2.8 for more information
on the trade-offs between bias and variance.

As a general note, for classification problems we imagine that we have the input matrix X ∈ Rn×m (or
perhaps they have been mapped to some basis Φ, without loss of generality) with outputs now ”one-hot
encoded.” This means that if there are c output classes, rather than representing the output label y as an
integer 1, 2, . . . , c, we represent y as a ”one-hot” vector of length c. A ”one-hot” vector is defined as having
every component equal to 0 except for a single component which has value equal to 1. For example, if there
are c = 7 classes and a particular data point belongs to class 3, then the target vector for this data point
would be y = [0, 0, 1, 0, 0, 0, 0]. We will define C1 to be the one-hot vector for the 1st class, C2 for the
2nd class, etc. Thus, in the previous example y = C3. If there are c total classes, then the set of possi-
ble labels is {C1 . . . Cc} = {Ck}ck=1. Throughout the assignment we will assume that each label y ∈ {Ck}ck=1.

In problems 1 and 3, you may use numpy or scipy, but not scipy.optimize or sklearn. Example code
given is in Python 3.

Please type your solutions after the corresponding problems using this LATEX template, and start each prob-
lem on a new page.

Please submit the writeup PDF to the Gradescope assignment ‘HW2’. Remember to assign pages
for each question.

Please submit your LATEX file and code files to the Gradescope assignment ‘HW2 - Supplemen-
tal’.

You can use a maximum of 2 late days on this assignment. Late days will be counted based on the latest
of the two submissions.

Problem 1 (Exploring Bias and Variance, 10 pts)

In this problem, we will explore the bias and variance of a couple of different model classes when it
comes to classification.

The data have one-dimensional inputs x and binary outputs y.

x, y

-8, 1

-3, 0

-2, 1

-1, 0

0, 0

1, 0

2, 1

3, 1

4, 1

5, 1

1. Fit a linear classifier based off the value of sigmoid(wTφ) (using a decision threshold of 0.5) with
the bases φ1(x) = [1, x], φ2(x) = [1, x, x2], φ3(x) = [1, x, x2, x3, x4, x5, x6] and a logistic loss with
gradient descent. Note that the classes are represented with 0’s and 1’s. Repeat your gradient
descent 25 times for each basis option, with different random starting values of w. Use η = 0.001
and take 10000 steps for each run, and make sure to average the gradient over the data points
(for each step). These parameters, while not perfect, will ensure your code runs in a reasonable
amount of time. The emphasis of this problem is on capturing the bias-variance trend, so don’t
worry the exact details of the models as long as this trend is captured. Hint: if you run into log(0)
issues in the logistic loss function, you can use a small ε = 0.000001 to take care of it.

2. Create three plots, one for each basis. On each plot, first plot the the data points as given
above, then plot the prediction functions of the top 10 runs (in terms of loss) of gradient descent.
Explicitly, the prediction function of a given model is essentially plotting sigmoid(wTφ(x)) > 0.5
for all x’s (seen in the starter code with a random w that you will need to change). While unlikely,
in case all 25 runs were poor, you may need to rerun your code.

3. Explain what you see in terms of the bias-variance trade-off.

4. If we were to have ”triple” the data, as in add in (-6.33, 1), (-4.67, 0), (-2.67, 0), (-2.33, 1) ...
(4.33, 1), (4.66, 1), how would the variance change (no need to rerun your code, just answer this
as a conceptual question)? Why do you think that may be the case? See graph below for reference.

If we had triple the data:

Solution

Problem 2 (Matrix calculus, 15pts)

Consider now a generative c-class model. We adopt class prior p(y = Ck;π) = πk for all k ∈ {1, . . . , c}
(where πk is a parameter of the prior). Let p(x|y = Ck) denote the class-conditional density of features
x (in this case for class Ck). Consider the data set D = {(xi,yi)}ni=1 where as above yi ∈ {Ck}ck=1 is
encoded as a one-hot target vector and the data are independent.

1. Write out the negative log-likelihood of the data set, − ln p(D;π).

2. Since the prior forms a distribution, it has the constraint that
∑

k πk − 1 = 0. Using the hint
on Lagrange multipliers below, give the expression for the maximum-likelihood estimator for the
prior class-membership probabilities, i.e. π̂k. Make sure to write out the intermediary equation
you need to solve to obtain this estimator. Double-check your answer: the final result should be
very intuitive!

For the remaining questions, let the class-conditional probabilities be Gaussian distributions with the
same covariance matrix

p(x|y = Ck) = N (x|µk,Σ), for k ∈ {1, . . . , c}

and different means µk for each class.

3. Derive the gradient of the negative log-likelihood with respect to vector µk. Write the expression
in matrix form as a function of the variables defined throughout this exercise. Simplify as much
as possible for full credit.

4. Derive the maximum-likelihood estimator µ̂k for vector µk. Once again, your final answer should
seem intuitive.

5. Derive the gradient for the negative log-likelihood with respect to the covariance matrix Σ (i.e.,
looking to find an MLE for the covariance). Since you are differentiating with respect to a matrix,
the resulting expression should be a matrix!

6. Derive the maximum likelihood estimator Σ̂ of the covariance matrix.

Hint: Lagrange Multipliers. Lagrange Multipliers are a method for optimizing a function f with
respect to an equality constraint, i.e.

min
x
f(x) s.t. g(x) = 0.

This can be turned into an unconstrained problem by introducing a Lagrange multiplier λ and con-
structing the Lagrangian function,

L(x, λ) = f(x) + λg(x).

It can be shown that it is a necessary condition that the optimum is a critical point of this new function.
We can find this point by solving two equations:

∂L(x, λ)

∂x
= 0 and

∂L(x, λ)

∂λ
= 0

Cookbook formulas. Here are some formulas you might want to consider using to compute difficult
gradients. You can use them in the homework without proof. If you are looking to hone your matrix
calculus skills, try to find different ways to prove these formulas yourself (will not be part of the
evaluation of this homework). In general, you can use any formula from the matrix cookbook, as long
as you cite it. We opt for the following common notation: X−> := (X>)−1

∂a>X−1b

∂X
= −X−>ab>X−>

∂ ln |det(X)|
∂X

= X−>

Solution

Problem 3 (Classifying Stars, 15pts)

You’re tasked with classifying three different kinds of stars, based on their magnitudes and temperatures.
See star.png for a plot of the data, adapted from http://astrosci.scimuze.com/stellar_data.htm

and available as data/hr.csv, which you will find in the Github repository.

The CSV file has three columns: type, magnitude, and temperature. The first few lines look like this:

Type,Magnitude,Temperature

Dwarf,-5.8,-0.35

Dwarf,-4.1,-0.31

...

In this problem, you will code up 4 different classifiers for this task:

a) A three-class generalization of logistic regression, also known as softmax regression. You
will do this by implementing gradient descent on the negative log-likelihood. You will need to find
good values for the learning rate η (self.eta) and regularization strength λ (self.lam). Make
sure to include a bias term and to use L2 regularization. See CS181 Textbook’s Chapter 3.6 for
more details on multi-class logistic regression and softmax.

b) A generative classifier with Gaussian class-conditional densities with a shared covari-
ance matrix across all classes. Feel free to re-use your Problem 2 results.

c) Another generative classifier with Gaussian class-conditional densities , but now with
a separate covariance matrix learned for each class. (Note: The staff implementation can
switch between the two Gaussian generative classifiers with just a few lines of code.)

d) A kNN classifier in which you classify based on the k = 1, 3, 5 nearest neighbors and the
following distance function: dist(star1, star2) = ((mag1 - mag2)/3)2 + (temp1 - temp2)2 (where
nearest neighbors are those with the smallest distances from a given point).

Note: because we are predicting over a continuous space (not just the training data), we omit the
step of making each training point ignore itself when selecting neighbors).

After implementing the above classifiers, complete the following exercises:

1. Plot the decision boundaries generated by each classifier for the dataset. Include them in your
PDF. Identify the similarities and differences among the classifiers. What explains the differences?

2. For logistic regression only, make a plot with ”Number of Iterations” on the x-axis and ”Negative
Log-Likelihood Loss” on the y-axis for several configurations of hyperparameters. Note which
configuration yields the best final loss. What are your final choices of learning rate (η) and reg-
ularization strength (λ), and why are they reasonable? How does altering these hyperparameters
affect the ability to converge and the rate of convergence (a qualitative description is sufficient)?

3. For both Gaussian generative models, report the negative log-likelihood loss. Which model has
a lower loss, and why? For the separate covariance model, be sure to use the covariance matrix
that matches the true class of each data point.

4. Consider a star with Magnitude 6 and Temperature 2. To what class does each classifier assign
this star? Do the classifiers give any indication as to whether or not you should trust them?

Implementation notes: Run the controller file, T2 P3.py, to test your code. Write the actual im-
plementations in the GaussianGenerativeModel, LogisticRegression, and KNNModel classes, which
are defined in the three T2 P3 ModelName.py files. These classes follow the same interface pattern as
sklearn. Their code currently outputs nonsense predictions just to show the high-level interface, so you
should replace their predict() implementations. You’ll also need to modify the hyperparameter values
in T2 P3.py for logistic regression.

http://astrosci.scimuze.com/stellar_data.htm

Solution

Name

Collaborators and Resources

Whom did you work with, and did you use any resources beyond cs181-textbook and your notes?

Calibration

Approximately how long did this homework take you to complete (in hours)?

