Assignment #1
(S181-S20 Due: 11:539pm February 7, 2020

Homework 1: Linear Regression

Introduction

This homework is on different forms of linear regression and focuses on loss functions, optimizers, and
regularization. Linear regression will be one of the few models that we see that has an analytical solution.
These problems focus on deriving these solutions and exploring their properties.

If you find that you are having trouble with the first couple problems, we recommend going over the fun-
damentals of linear algebra and matrix calculus (see links on website). The relevant parts of the cs181-
textbook notes are Sections 2.1 - 2.7. We strongly recommend reading the textbook before beginning the
homework.

We also encourage you to first read the Bishop textbook, particularly: Section 2.3 (Properties of Gaussian
Distributions), Section 3.1 (Linear Basis Regression), and Section 3.3 (Bayesian Linear Regression). (Note
that our notation is slightly different but the underlying mathematics remains the same!).

Please type your solutions after the corresponding problems using this IXTEX template, and start each
problem on a new page.

Homeworks will be submitted through Gradescope. You will be added to the course Gradescope once you join
the course Canvas page. If you haven’t received an invitation, contact the course staff through Piazza.

Please submit the writeup PDF to the Gradescope assignment ‘HW1’. Remember to assign pages
for each question.

Please submit your I’ TXfile and code files to the Gradescope assignment ‘HW1 - Supplemen-
tal’.

You can use a maximum of 2 late days on this assignment. Late days will be counted based on the latest
of the two submissions.

Problem 1 (Optimizing a Kernel, 15pts)

Kernel-based regression techniques are similar to nearest-neighbor regressors: rather than fit a para-
metric model, they predict values for new data points by interpolating values from existing points in
the training set. In this problem, we will consider a kernel-based regressor of the form:

_ Zn K(zn, 2")yn
Zn K(zy,z*)

where (z,,y,) are the training data points, and K (z,2’) is a kernel function that defines the similarity
between two inputs x and z’. Assume that each x; is represented as a row vector, i.e. a 1 by D vector
where D is the number of features for each data point. A popular choice of kernel is a function that
decays as the distance between the two points increases, such as

f@®)

K(z,a") = exp(~||lz — 2/|[3) = exp(~ (2 — 2)(z — 2")T)

However, the squared Euclidean distance ||z —'||3 may not always be the right choice. In this problem,
we will consider optimizing over squared Mahalanobis distances

K(z,2) = exp(—(z — 2)W (@ — "))
where W is a symmetric D by D matrix. Intuitively, introducing the weight matrix W allows for
different dimensions to matter differently when defining similarity.

1. Let {(zn,yn)})_; be our training data set. Suppose we are interested in minimizing the residual
sum of squares. Write down this loss over the training data £(W) as a function of W.

Hint: For each point (z;,y;) in the training dataset, consider for which subset of training data
you should sum kernel function K over for each f(x;).

2. In the following, let us assume that D = 2. That means that W has three parameters: Wiy,
Wao, and Wis = Wsy. Expand the formula for the loss function to be a function of these three
parameters.

3. Consider the following data set:

x1 , x2 , ¥

And the following kernels:

10 0.1 0 1 0
Wl_o‘[o 1} WQ‘“{O 1} Wi”‘“{o 0.1}

with a = 10. Write some Python code to compute the loss with respect to each kernel for the
dataset provided above. Which kernel does best? Why? How does the choice of « affect the loss?

4. Derive the gradients with respect to each of the parameters in W.

5. Bonus: Code up a gradient descent to optimize the kernel for the data set above. Start your
gradient descent from W;. Report on what you find.
Gradient descent is discussed in Section 3.4 of the cs181-textbook notes and Section 5.2.4 of
Bishop, and will be covered later in the course!

Problem 2 (Kernels and kNN, 10pts)

Now, let us compare the kernel-based approach to an approach based on nearest-neighbors. Recall that
kNN uses a predictor of the form

1
flz¥) = %zn:yn]l(xn is one of k-closest to z¥)

where I is an indicator variable. For this problem, you will use the same kernels as Problem 1, and
dataset data/p2.csv.

1. Make 6 plots using the kernel distance given by W; from Problem 1. In each plot, you will plot
the predicted value of y as the color of each point (grayscale between 0 and 1) given z1 (horizontal
axis) and zo (vertical axis). For 1 and x2, use a grid spaced every 0.1 for 1 = 0 to z; = 1 and
o =0to xzo = 1.

For the first three plots, use the kernel-based predictor varying o = {0.1,3,10}. For the next
three plots, use the kNN predictor with o = 1, k = {1,5,15}. Print the least squares loss for each
of the 6 plots.

You may choose to use some starter Python code to create your plots provided in T1_P2.py.
Please write your own implementation of kINN for full credit. Do not use external libraries
to find nearest neighbors.

2. Do any of the kernel-based regression plots look like the INN? The 15NN? Why or why not?

3. Do you think that there will always be a version of kernel regression (based on varying «) that
looks like a kNN for any k, for a fixed distance or kernel function? Why or why not?

4. Why did we not vary « for the kNN approach?

Problem 3 (Deriving Linear Regression, 10pts)

In class, we noted that the solution for the least squares linear regressions “looked” like a ratio of
covariance and variance terms. In this problem, we will derive that. Let us assume the following
generative process for our data:

x ~N(0,%,;)
e ~ N(0,0?)
ylr,e =wlz +e

Assume scalar z, €, w, and y, and that = is independent of e.

1.
2.
3.

Provide a formula for ¥,, = E, ,[yz]| based on the above generative model.
Provide a formula to estimate E, ,[yz] given observed data {(zy,y,)}2_;.

Moment terms like E, ,[yz], E, ,[x2T], etc. can easily be estimated from the data (like you did
above). Write down an expression for the optimal w* which minimizes expected squared residual
loss in terms of moments (e.g. [z, Xz, Xyz, o). Does your expression for optimal w* match the
optimal w* for least squares linear regression derived in Section 2.6 of the cs181-textbook?

Now, suppose the data x were generated from N (p,,>,). Write an expression for w* in terms of
moments (as above).

Would the formula for w* derived in (3.4) hold if the process generating the z’s were no longer
Gaussian, but still had the same means, variances, and covariances? That is, E[z] = p,, Var[z] =
3., Varle] = 02, and Elyz] = ¥, but the distribution of z is not Gaussian?

Problem 4 (Modeling Changes in Republicans and Sunspots, 15pts)

The objective of this problem is to learn about linear regression with basis functions by modeling the
number of Republicans in the Senate. The file data/year-sunspots-republicans.csv contains the
data you will use for this problem. It has three columns. The first one is an integer that indicates
the year. The second is the number of Sunspots observed in that year. The third is the number of
Republicans in the Senate for that year. The data file looks like this:

Year,Sunspot_Count ,Republican_Count
1960,112.3,36

1962,37.6,34

1964,10.2,32

1966,47.0,36

You can see scatterplots of the data in the figures below. The horizontal axis is the Year, and the
vertical axis is the Number of Republicans and the Number of Sunspots, respectively.

(Data Source: http://www.realclimate.org/data/senators_sunspots.txt)

1. In this problem you will implement ordinary least squares regression using 4 different basis func-
tions for Year (x-axis) v. Number of Republicans in the Senate (y-axis). Some starter
Python code that implements simple linear regression is provided in T1_P3.py.

First, plot the data and regression lines for each of the following sets of basis functions, and include
the generated plot as an image in your submission PDF. You will therefore make 4 total plots:

(a) ¢j(x) =2 for j=1,...,5
ie, use basis y = a1z + agz? + azz® + ayx? + azz® for some constants {ay, ..., a5}

(b) ;(x) = exp =% for i, = 1960, 1965, 1970, 1975, . .. 2010

)
(c) ¢j(z) = cos(x/j) for j=1,...,5
)=

(d) ¢j(x) =cos(z/j) for j=1,...,25

* Note: Be ure to add a bias term for each of the basis functions above.

Second, for each plot include the residual sum of squares error.

2. Repeat the same exact process as above but for Number of Sunspots (x-axis) v. Number of
Republicans in the Senate (y-axis). Now, however, only use data from before 1985, and only
use basis functions (a), (¢), and (d) — ignore basis (b). You will therefore make 3 total plots. For
each plot make sure to also include the residual sum of squares error.

Which of the three bases (a, ¢, d) provided the ”best” fit? Choose one, and keep in mind the
generalizability of the model.

Given the quality of this fit, do you believe that the number of sunspots controls the number of
Republicans in the senate (Yes or No)?

http://www.realclimate.org/data/senators_sunspots.txt

Name

Collaborators and Resources

Whom did you work with, and did you use any resources beyond cs181-textbook and your notes?

Calibration

Approximately how long did this homework take you to complete (in hours)?

